Benchmarking für die Indoor-Lokalisierung Autonomer Mobiler Roboter in der Intralogistik

Authors

  • Markus Knitt Institut für Technische Logistik, Technische Universität Hamburg
  • Yousef Elgouhary Institut für Technische Logistik, Technische Universität Hamburg
  • Jakob Schyga Institut für Technische Logistik, Technische Universität Hamburg
  • Hendrik Rose Institut für Technische Logistik, Technische Universität Hamburg
  • Philipp Braun Institut für Technische Logistik, Technische Universität Hamburg
  • Jochen Kreutzfeldt Institut für Technische Logistik, Technische Universität Hamburg

DOI:

https://doi.org/10.2195/lj_proc_knitt_de_202310_01

Keywords:

Benchmarking, Lokalisierung, Robotik, Intralogistik, Localization, Robotics, Intralogistics

Abstract

This paper introduces a novel approach to benchmarking Indoor Localization Systems (ILS) for mobile robots in warehouse and manufacturing contexts. The study focuses on diverse localization technologies commonly used in mobile robotics and implements transparent and comparable performance metrics, an automated experimental procedure, as well as an intuitive performance visualization approach. Experiments were conducted using a custom-built robot equipped with various sensors, including LiDAR, Ultra-Wideband (UWB), and vision systems. A process for systematically analyzing the impact of environmental factors such as lighting, reflectivity, and obstacles on localization performance is proposed. The results provide insights into system robustness and accuracy under different conditions. The study enables more efficient experimental analysis of sensor fusion and optimization strategies for achieving optimal performance and offers a workflow to efficiently investigate sensor fusion concepts using real data.

Downloads

Published

2023-10-11

How to Cite

Knitt, M., Elgouhary, Y., Schyga, J., Rose, H., Braun, P., & Kreutzfeldt, J. (2023). Benchmarking für die Indoor-Lokalisierung Autonomer Mobiler Roboter in der Intralogistik. Logistics Journal: Proceedings, (19). https://doi.org/10.2195/lj_proc_knitt_de_202310_01