The Potential of Deep Learning based Computer Vision in Warehousing Logistics

Authors

  • Jérôme Rutinowski Lehrstuhl für Förder- und Lagerwesen FLW, TU Dortmund University
  • Hazem Youssef Lehrstuhl für Förder- und Lagerwesen FLW, TU Dortmund University
  • Anas Gouda Lehrstuhl für Förder- und Lagerwesen FLW, TU Dortmund University
  • Christopher Reining Lehrstuhl für Förder- und Lagerwesen FLW, TU Dortmund University
  • Moritz Roidl Lehrstuhl für Förder- und Lagerwesen FLW, TU Dortmund University

DOI:

https://doi.org/10.2195/lj_proc_rutinowski_en_202211_01

Keywords:

Computer Vision, Deep Learning, Object Segmentation, Objekt Segmentierung, Pose Estimation, Re-Identification, Re-Identifikation

Abstract

This work describes three deep learning based computer vision approaches, that hold the potential to increase the degree of automation and the productivity of common warehousing procedures. These approaches will focus on: the re-identification of logistical entities, especially when entering and leaving the warehouse; the multi-view pose estimation of logistical entities to track and to localize them on the shop floor; and the category-agnostic segmentation of items in a bin for robotic grasping.

Downloads

Published

2022-11-02

How to Cite

Rutinowski, J., Youssef, H., Gouda, A., Reining, C., & Roidl, M. (2022). The Potential of Deep Learning based Computer Vision in Warehousing Logistics. Logistics Journal: Proceedings, (18). https://doi.org/10.2195/lj_proc_rutinowski_en_202211_01