Dynamische Risikoorientierung durch Predictive Analytics am Beispiel der Instandhaltungsplanung

Authors

  • Fabian Förster Fraunhofer-Institut für Materialfluss und Logistik IML
  • Arkadius Schier Fraunhofer-Institut für Materialfluss und Logistik IML
  • Michael Henke Fraunhofer-Institut für Materialfluss und Logistik IML, Lehrstuhl für Unternehmenslogistik (LFO), TU Dortmund
  • Michael ten Hompel Fraunhofer-Institut für Materialfluss und Logistik IML, Lehrstuhl für Förder- und Lagerwesen (FLW), TU Dortmund

DOI:

https://doi.org/10.2195/lj_Proc_foerster_de_201912_01

Keywords:

autonomous control, decentral decision-making, dynamic sequencing, multi-agent-systems, predictive maintenance

Abstract

Autonomous control methods (ACMs) are considered as a promising approach to deal with an increasingly dynamic and complex production environment. However, existing ACMs do not sufficiently utilize the potential arising out of the plannability offered by condition based maintenance orders in the context of predictive maintenance when doing dynamic and myopic production scheduling. In order to better leverage the potentials of a combined approach, this work presents a negotiation environment based on a reversed contract net protocol to enable a monetary comparability of both order types. This is intended to realize a better integration of condition based maintenance orders into the reactive machine allocation decisionmaking of ACMs.

Downloads

Published

2019-12-20

How to Cite

Förster, F., Schier, A., Henke, M., & ten Hompel, M. (2019). Dynamische Risikoorientierung durch Predictive Analytics am Beispiel der Instandhaltungsplanung. Logistics Journal: Proceedings, (15). https://doi.org/10.2195/lj_Proc_foerster_de_201912_01