Methodik zur Temporären Analyse Logistischer Systeme auf Basis von Entfernungsdaten und Methoden der Prozessklassifizierung

Authors

  • Madlin Müller Professur für Technische Logistik, Institut für Technische Logistik und Arbeitssysteme, Technische Universität Dresden
  • Mathias Kühn Professur für Technische Logistik, Institut für Technische Logistik und Arbeitssysteme, Technische Universität Dresden
  • Thorsten Schmidt Professur für Technische Logistik, Institut für Technische Logistik und Arbeitssysteme, Technische Universität Dresden

DOI:

https://doi.org/10.2195/lj_Proc_mueller_de_201912_01

Keywords:

Maschinelles Lernen, Prozessklassifizierung, RSSI, Retrospektive Lokalisierung, Signalaufbereitung

Abstract

Small and medium-sized enterprises (SMEs) face the challenge of a missing or incomplete database, especially for logistics processes. In addition, SMEs have only limited access to currently available methods for data acquisition. Manual methods usually requires a very large amount of resources and result in a limited database. Indoor tracking systems are costintensive, inflexible and require a high installation effort. There are currently no suitable methods available for SMEs to create a well-founded and reliable data basis. For these reasons, a methodology is presented which is subject to the objective of developing an SME-appropriate approach for efficient, temporarily feasible data collection and evaluation in production and logistics systems as a basis for process analysis and improvement.. The overall methodology focuses on the retrospective, event-based tracing and analysis of material flow objects. The technological basis are innovative BLE-based signal transmitters, so-called beacons, and commercially available Smart Mobile Devices (SMD) as receivers, between which distance data are measured and retrospectively derived movement profiles. As a basis for the interpretation of relative movements of transmitters and receivers based on the distance data, a modular software architecture is to be developed. The selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data are in the research focus.

Downloads

Published

2019-12-20

How to Cite

Müller, M., Kühn, M., & Schmidt, T. (2019). Methodik zur Temporären Analyse Logistischer Systeme auf Basis von Entfernungsdaten und Methoden der Prozessklassifizierung. Logistics Journal: Proceedings, (15). https://doi.org/10.2195/lj_Proc_mueller_de_201912_01