Camera-assisted Pick-by-feel

Authors

  • Réné Grzeszick Arbeitsgruppe Mustererkennung in eingebetteten Systemen, Fakultät Informatik, TU Dortmund
  • Sascha Feldhorst Lehrstuhl für Förder- und Lagerwesen, Fakultät Maschinenbau, TU Dortmund
  • Christian Mosblech prismat Gesellschaft für Softwaresysteme und Unternehmensberatung mbH
  • Gernot A. Fink Arbeitsgruppe Mustererkennung in eingebetteten Systemen, Fakultät Informatik, TU Dortmund
  • Michael ten Hompel Lehrstuhl für Förder- und Lagerwesen, Fakultät Maschinenbau, TU Dortmund

DOI:

https://doi.org/10.2195/lj_Proc_grzeszick_en_201610_01

Keywords:

Intralogistics, Intralogistik, Kommissionieren, Kommissionierung, Deep Learning, Bild Klassifikation, Bild Retrieval, Aktivitätserkennung

Abstract

In this contribution a novel system to support order pickers in warehouses is introduced. In contrast to existing solutions it utilizes the tactile perception in order to reduce the systems impact on the visual and auditive senses. Therefore, a smartwatch and a low-cost camera which are both worn by the picker are combined with activity and object recognition methods for surveying the picking process. The activity recognition is used in order to determine whether an object is picked. Then, barcode detection and a CNN (Convolutional Neural Network) based object recognition approach are employed for recognizing whether the correct item is chosen. Beside the conceptional work, implementation details and evaluation results under realistic conditions and on a publicly available dataset are presented.

Downloads

Published

2016-10-31

How to Cite

Grzeszick, R., Feldhorst, S., Mosblech, C., Fink, G. A., & ten Hompel, M. (2016). Camera-assisted Pick-by-feel. Logistics Journal: Proceedings, (12). https://doi.org/10.2195/lj_Proc_grzeszick_en_201610_01