Handling of Strongly Correlated Logistics and Production Processes

Authors

  • Sebastian Rank Professur für Technische Logistik, Institut für Technische Logistik und Arbeitssysteme, Technische Universität Dresden
  • Tobias Uhlig Professur für Modellbildung und Simulation, Institut für Technische Informatik, Universität der Bundeswehr München
  • Thorsten Schmidt Professur für Technische Logistik, Institut für Technische Logistik und Arbeitssysteme, Technische Universität Dresden
  • Oliver Rose Professur für Modellbildung und Simulation, Institut für Technische Informatik, Universität der Bundeswehr München

DOI:

https://doi.org/10.2195/lj_Proc_rank_de_201210_01

Keywords:

Ankunftsprozessmodellierung, Autokorrelation, Simulation, Zufallszahlengenerator, modeling of arrival processes, random number generator

Abstract

Random number generators are widely used to model stochastic processes in logistics and production systems. Creating truly independent random numbers is one important feature of these generators. However, actual data in real world systems is rarely independent. This paper discusses occurrences of dependencies in observed data by examining sample data for correlation structures. It will be demonstrated that independent random numbers created by common generators are not suitable to model processes with distinct dependencies.

Downloads

Published

2012-10-11

How to Cite

Rank, S., Uhlig, T., Schmidt, T., & Rose, O. (2012). Handling of Strongly Correlated Logistics and Production Processes. Logistics Journal: Proceedings, (8). https://doi.org/10.2195/lj_Proc_rank_de_201210_01