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outing of multiple free ranging transportation vehi-

cles is a complex task. All vehicles simply using the

shortest possible way may lead to a lot of routing conflicts. 

The offline definition of a set of rules that influence the 

vehicles choice for a specific route can lead to longer 

travel distances but shorter travel times. This publication 

presents and discusses multiple approaches for defining 

such a priori rules. The approaches range from a core 

manual planning procedure to an automatic algorithm. A 

simulation model proves in a basic case study the impact 

of applying such rules on the systems’ performance.  

[Keywords: AGV, conflict avoidance, vehicle routing, fleet man-

agement] 

as Routing mehrerer frei verfahrbarer Transport-

fahrzeuge ist eine komplexe Aufgabe. Wenn alle

Fahrzeuge den kürzest möglichen Weg wählen, führt dies 

zu einer Vielzahl an Routingkonflikten. Die vorausge-

hende Festlegung von Regeln, welche die konkrete Stre-

ckenwahl der Fahrzeuge beeinflussen, kann zu längeren 

Distanzen aber eben auch kürzeren Fahrzeiten führen. 

Diese Publikation präsentiert und diskutiert verschiedene 

Ansätze, um solche a priori Regeln festzulegen. Die An-

sätze reichen von einem weitestgehend manuellen Planen 

hin zu einem automatisierten Algorithmus. Der Einfluss 

dieser Regeln auf die Systemperformanz wird in einem 

Standardszenario mittels Simulation nachgewiesen. 

[Schlüsselwörter: FTS, Konfliktvermeidung, Routing, Flotten-

management] 

1) MOTIVATION

Object of research are fleets of autonomous vehicles 

with path-free navigation applied for transportation tasks in 

in-house logistics [KDS15] or at container terminals 

[DZL06]. Autonomy and path-free navigation are state of 

the art in vehicle transport systems. In using a large number 

of vehicles with a high degree of freedom for each individ-

ual vehicle, the expected benefit of vehicle-based transpor-

tation systems is the combination of high throughput with 

a maximum of flexibility, scalability and simple reconfig-

urability [KDS15].  

However, applying multiple autonomous vehicles 

with path-free navigation in a restricted area will lead to a 

high number of routing conflicts if each vehicle conse-

quently chooses the shortest path to its next destination. 

Without any further strategy for conflict avoidance, the de-

lays resulting from conflict resolution (braking, rerouting, 

etc.) limit the reachable performance of the entire transpor-

tation system. Centralized online controlling approaches, 

which take the routing and online status of all vehicles into 

account quickly reach a computational limit, especially for 

systems with a higher number of vehicles [Nie10]. Op-

posed to that, with decentralized controlling approaches the 

computational efforts are manageable because each vehicle 

makes its own routing decisions based on a limited amount 

of information [GKU18]. However, this usually leads to 

sub-optimal solutions. 

This publication presents and evaluates an approach 

that determines routing rules in an offline phase in order to 

avoid collisions proactively. During the operating phase 

each vehicle independently follows these rules without any 

further inter-vehicle communication or non-local real time 

information for decision making. As a consequence, the 

number of collisions should be reduced and the overall per-

formance of the transportation system is supposed to be im-

proved.  

The approach focuses on routing and conflict avoid-

ance for path free vehicles in completely free areas without 

any static obstacles. The free ranging vehicles are able to 

use the entire space and therefore have a maximum degree 

of freedom when it comes to routing. 
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The remainder of this publication is structured as fol-

lows: Chapter 2 reviews related literature regarding central-

ized and decentralized conflict avoidance strategies in the 

routing of autonomous vehicles. Chapter 3 presents our ap-

proach for decentralized conflict avoidance. Chapter 4 ex-

plains the simulation model that we used to evaluate our 

approach. Chapter 5 shows the results referring to a case 

study. Chapter 6 gives a summary and an outlook to future 

fields of research. 

2) LITERATURE REVIEW

Routing is about finding a path (for path guided vehi-

cles) or trajectory (for free ranging vehicles) from a current 

location to a specific destination. From a single vehicle’s 

perspective routing can be subdivided into two subprob-

lems of firstly determining available routes (if exist) and 

secondly selecting one specific route [QHH02]. Especially 

the selection of a specific route has decisive influence on 

the avoidance of conflicts and therefore on the system per-

formance [TaT95].  

Literature discusses various approaches for centralized 

and decentralized conflict avoidance, either for guided or 

free ranging vehicles. [CGF16] describe two opposing con-

cepts for the routing of multiple vehicles: the reactive par-

adigm, where each vehicle follows the shortest path to a 

given destination and reacts locally to conflicts with other 

vehicles and the deliberative paradigm, where a collision-

free path/trajectory for each vehicle of a fleet is calculated 

in advance of the execution. As will be shown in the fol-

lowing, most approaches in literature usually rank some-

where between these extreme concepts.  

The following depicts some examples for rather cen-

tralized approaches. [Ant17] presents an algorithm that ac-

tively delays guided vehicles on unidirectional paths in or-

der to avoid routing conflicts. [LLX17] define an 

optimization problem and use a numerical solver to calcu-

late the optimal vehicle trajectories for multiple free rang-

ing vehicles. Similar, [XNL14] perform a trajectory plan-

ning for free ranging vehicles in a container terminal by 

solving a mixed integer linear programming problem. 

[KK17] use an experience based algorithm for the routing. 

A deep reinforcement learning algorithm is trained to 

choose the best route in a grid layout based on the current 

system status. The algorithm can choose between the short-

est route, the (probably) fastest route and a route that avoids 

congestions. [ZGC18] introduce a centralized collision de-

tection and collision solution approach for a grid-based 

multi-vehicle system. They classify each collision into one 

of four different categories, e.g. head-on collision or cross 

collision. Afterwards they define four different approaches 

how to deal with collisions, e.g. delaying a vehicle or mod-

ifying its selected route. The authors are able to suggest 

beneficial solutions depending on the category of the colli-

sion. 

While usually leading to very good (even optimal) so-

lutions, centralized approaches have one significant down-

side in common: The calculations are very extensive, espe-

cially with bigger fleet sizes and many interdependencies 

[CGF16]. In addition, unexpected events (e.g. delays 

caused by unforeseen external influences) during the rout-

ing can make plans obsolete and require recalculations. 

The following presents some examples for rather de-

centralized approaches for conflict avoidance, where vehi-

cles independently make their decision based on a limited 

(local) amount of information [Kle13]. The concept of 

sharing information, e.g. intended routes between neigh-

boring vehicles is very popular within decentralized rout-

ing approaches, softening up the hard restriction of using 

local information only.  

Generally speaking, many decentralized approaches 

base on a similar idea: Each vehicle calculates its own route 

independently and shares it with all or at least with its 

neighboring vehicles. A subsequent algorithm or negotia-

tion protocol is responsible to solve potentially rising con-

flict situations and deicide about the right of way. [NES17] 

use a reinforcement learning approach to decide which ve-

hicle has to recalculate its route whenever a conflict is 

about to happen. [FMA18] use a zone-control strategy for 

guided vehicles. Vehicle Communication and priorities 

solve (possible) conflicts. [DDB17] use a global supervisor 

to provide otherwise independent free ranging vehicle 

agents with global conflict information that helps them to 

solve local conflicts. [BWS16] present a decentralized, re-

active approach for free ranging vehicles. Vehicle priorities 

causing route recalculations solve collisions here. As the 

trajectory calculations involve a global planer, the ap-

proach is only partly decentralized. However, the global 

planer also tries to avoid collisions proactively. The authors 

state that reducing collisions proactively is the better solu-

tion considering throughput and efficiency of the transpor-

tation system. 

[TS20] analyze a system where AGVs might block 

other vehicles during load handling. These blockings obvi-

ously decrease the system performance. The authors use 

deep reinforcement learning for route selection in a sce-

nario with two alternative paths. Based on experience, 

AGVs can predict the current congestion status and select 

the promising path accordingly. 

While being completely decentralized in the online 

phase, our approach strongly focuses on proactively de-

fined rules. These rules are linked to the design of path lay-

outs. In this connection [DSS14] present an automatic ap-

proach to generate a roadmap for the navigation of 

vehicles. The generated roadmap covers advantageously 

much of the available free space enabling multiple alterna-

tive paths between loadpoints. The authors present a partly 

decentralized approach for coordinating a fleet of vehicles 
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on such a roadmap in [DSS14b]. [UEO16] present an ex-

pert system for the generation of paths based on fuzzy logic 

that includes human knowledge. As a result, efficient 

roadmaps for real world scenarios can be generated in a 

short time.  

3) OUR APPROACH

Regarding the previously mentioned classification of 

[CGF16] the approach described in the following leads to 

a rather reactive vehicle behavior. However, in addition to 

the reactive paradigm vehicles do not just use the shortest 

path to a given destination. Instead, some proactively de-

fined rules usually make the vehicle follow a longer route 

to its destination with usually less conflicts which should 

lead to shorter travel times on average. Section 3.1. defines 

the general idea and elements of these proactively designed 

rules. Section 3.2. describes several approaches on how to 

specifically get a set of rules for a given scenario. 

a. ELEMENTS OF PROACTIVE RULES

The proactive rules consist of three elements that base 

on each other: 

1) Number and positions of lanes within the free area

2) Direction of the lanes that were defined in 1)

3) Vehicle choice for a specific route with regard to

the defined lanes and directions

The following describes these three elements in detail: 

The first element of proactive rules is the creation of 

specific lanes (similar to paths in a roadmap) within the 

area that has no further constraints otherwise. A lane can 

be seen as a subarea that restricts the number of possible 

movements. Figure 1 (a) shows a minimal example for the 

creation of three different lanes between a start and a desti-

nation point. With implemented lanes the vehicles have a 

rough route to stick to, which leads to a reduction of the 

degree of freedom.  

The second element is strongly linked to and based on 

the first element: The determination of specific directions 

for the lanes. Each lane can be either unidirectional in one 

or the other direction or bidirectional. Hence, there are 

three possible options for each lane segment. Figure 1 (b) 

shows an example for the creation of directions: the middle 

lane is bidirectional whereas the other lanes are unidirec-

tional. Similar to the first element, the directions further 

limit the overall degree of freedom. 

Even though vehicles with path-free navigation are not 

bound to a physical layout these vehicles still need a rough 

specification on how to reach a destination. The general 

idea is that within a given space general traffic lanes that 

vehicles have to follow are beneficial for the system per-

formance. Vehicles must for example not use the direct link 

between start and destination if this is not in accordance 

with the defined lanes. On a higher level the aggregation of 

multiple lanes in a free space results in one-way streets, 

aisles with right/left-hand driving, small traffic circles (see 

Figure 1 (b)) or even big general traffic circles. Vehicles 

that follow these predefined rules will usually have longer 

routes to a destination. However, they will run into less 

routing conflicts with other vehicles. As the vehicles are 

free floating they are always able to leave their planed route 

in case of a routing conflict. 

The third element is the choice for a specific route with 

regard to the underlying lanes and their directions. Figure 

1 (c) depicts an example for the choice of a specific route, 

as the two vehicles choose the outer lanes and avoid each 

other. It is important to keep in mind that this decision is 

made in a decentralized manner, which means that a vehi-

cle choosing a certain route to a destination does not have 

any information about the position of other vehicles or their 

current routes. 

The following section presents specific approaches in 

order to create lanes (element 1), their directions (element 

2) and approaches for vehicles to make a beneficial decen-

tralized choice for a route (element 3).

Figure 1. (a) design of general lanes between a start and desti-

nation point within an otherwise completely free area. (b) direc-

tions of the lanes (c) two vehicles choose a specific route to their 

destination 

b. DIFFERENT LEVELS OF AUTOMATION OF OUR 

APPROACH

This section presents different approaches to reach the 

described elements (lane position, lane direction, route 

choice) of a priori rules for conflict avoidance. In the fol-

lowing, the approaches are ranked and reach from a mainly 

manual procedure to a completely automatic algorithm. 

1) A human planer who is familiar with the machine lay-

out and underlying material flows designs the position

and direction of all lanes and therefore the general ve-

hicle layout. Considering the possible lanes and per-

mitted directions each vehicle always takes the short-

est route between a source and a destination.
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2) Similar to approach 1) a human planer designs the un-

derlying lanes and directions. However, instead of al-

ways taking the shortest route vehicles are able to

make this choice based on historical travel times.

Whenever a vehicle makes the choice for a specific

route, it takes the fastest route with regard to the mov-

ing average of the last ten travel times for each route.

Additionally, sometimes a vehicle takes a random

route to a given destination in order to re-evaluate the

travel time of other routes or to explore the travel

times of by then unknown routes.

Experience-based route selection as used in approach 

2 is not just about finding the fastest route in a layout once 

and then stick with it. The underlying idea is an implicit 

coordination between multiple opposing traffic flows over 

the entire layout. For example, if there is a slightly heavier 

traffic on a specific lane in direction A, the opposing direc-

tion B will have worse travel times on average due to mul-

tiple conflicts. Consequently, the opposing traffic B might 

find a longer but faster route making direction A even more 

favorable. Considering more complex layouts, the overall 

traffic flow should coordinate and spread itself over time 

using experience-based route selection. 

Applying experience-based route selection brings up 

the question of sharing experience between the vehicles. 

Generally speaking, it is possible to make each vehicle in-

dividually try various routes and make the entire system 

find a beneficial balance. However, it is more complex and 

takes much more time to reach good solutions. Though this 

violates the decentralized concept slightly, for our ap-

proach, vehicles put their past travel times within a shared 

experience table, which is accessible by all vehicles.  

3) This approach is similar to approach 2. However, a

human planer is not in charge of determining the di-

rections of the lanes. Each lane is regarded as bidirec-

tional in the beginning and the vehicles choose the

best route according to experience. Implicitly, vehi-

cles use one direction of certain lanes more often and

a beneficial usage of lanes evolves independently over

time. However, without explicitly designed directions

there are more feasible routes to choose from in the

experience-based route selection. This leads to a more

complex learning process.

4) Based on the lanes designed by a human planer, a sto-

chastic procedure generates a feasible start solution of

the different directions. Using a genetic algorithm as

a meta heuristic, beneficial combinations of directions

are revealed over time. Within a respective layout, a

vehicle always takes the shortest route to a destina-

tion.

The application of lanes minimizes the opposing traf-

fic compared to an approach where each vehicle takes the 

shortest air-line route only. The general traffic spreads it-

self better over the entire space of the layout. However, a 

major disadvantage is that the traffic is still limited to the 

(few) lanes not using the rest of the accessible space.  

5) In order to spread the traffic further throughout the en-

tire space, level 5 consists of an approach based on

randomly created waypoints. An algorithm creates a

specific number of randomly placed waypoints that

correspond exactly to one start and one destination lo-

cation (see Figure 2 (a)). A waypoint cannot be further

apart from the start or destination point than the dis-

tance between the start and destination. A route goes

via exactly one waypoint. Hence, each waypoint rep-

resents a different route of a specific start-destination-

relation. As the approach creates waypoints almost

randomly, the different routes to a destination are

widely spread over the accessible space. Therefore, an

entire sub layout (or multiple alternative paths) exits

for each combination of a start and destination loca-

tion (see Figure 2 (b)). The vehicles’ choice for a spe-

cific route, i.e. the choice for a random waypoint ba-

ses on historical travel times (see Figure 2 (c)).

Figure 2. different steps of approach level 5: (a) multiple random 

waypoints (b) each waypoint stands for a unique route between 

a start location and a destination location (c) vehicles choose a 

specific route based on historical travel times 

Table 1. Overview of the different levels of approaches 

level generation 

of lanes 

determination of 

directions 

choice of 

route 

1 manual manual shortest 

2 manual manual experience 

3 manual all bidirectional experience 

4 manual genetic algorithm shortest 

5 random waypoints experience 

DOI: 10.2195/lj_Proc_reith_en_202012_01 
URN: urn:nbn:de:0009-14-51618 

http://nbn-resolving.de/urn:nbn:de:0009-14-29382


© 2020 Logistics Journal: Proceedings – ISSN 2192-9084     Page 5 
Article is protected by German copyright law 

Table 1 shows an overview of the different approaches 

(level 1-5) presented in this section. As already mentioned, 

the approaches range from a rather manual procedure (1) to 

a completely automated algorithm (5). Whereas the lanes 

and directions of a rather manually designed layout are usu-

ally static for all vehicle fleet sizes (1 and 2), the experi-

ence-based route selection and genetic algorithm (3 and 4) 

are capable of adjusting the directions of the lanes with re-

spect to a given fleet size. The automatic approach (5) is 

even capable of finding advantageous positions and direc-

tions of the lanes depending on the fleet size.  

4) SIMULATION SOFTWARE AND MODEL

Due to the dynamic nature of the routing problem with 

free ranging vehicles, we built a simulation model to eval-

uate the different approaches for the conflict avoidance via 

a priori defined rules. Our simulation model bases on the 

python discrete-event simulation framework simpy 

[Sim20]. 

A specific route is broken down in a sequence of 

points. Each vehicle has an independent algorithm that cal-

culates its next step (vector) towards a point taking the cur-

rent direction, its current speed, possible acceleration etc. 

into consideration. However, the point only has to be 

reached “roughly”, which means that a vehicle does not 

have to physically drive over it. Therefore, vehicles are 

modeled as free ranging while still being capable of follow-

ing a set of lanes.  

Vehicles that are about to get into a conflict with op-

posing vehicles or vehicles that are crossing its path are ca-

pable of using a basic collision resolution strategy. Both 

conflicting vehicles start searching for a vector that is close 

to the initial preferred direction to the next point but does 

not lead into a collision with the other vehicle. As in a dis-

crete event simulation nothing happens entirely concurrent, 

one vehicle makes a first minor step to one side usually 

causing the other vehicle to choose the other side. Conse-

quently, the collision gets resolved with the two vehicles 

driving around each other. However, both vehicles have to 

decelerate, make a detour and accelerate again, which leads 

to a longer travel time. 

Our simulation software has a user interface, which al-

lows the user to create individual layouts and scenarios. For 

simulation result analysis, a variety of performance indica-

tors were defined and included within the software. After 

the simulation run single atomic steps up to the overall 

transportation system performance can be analyzed in de-

tail. As the simulation saves each atomic step of a vehicle, 

scenes of the simulation can be visualized and replayed af-

terwards. Figure 3 shows the visualization of two different 

scenes as an example. 

With the help of a meta environment that keeps track 

of the results and automatically starts simulation runs with 

a given parameter constellation, it is possible to execute 

hundreds of simulation runs with various parameter con-

stellations without human interaction. This allows and en-

sures gaining statistical evidence. Furthermore, the routing 

experience of decisions in past simulation runs can be ag-

gregated, which is necessary for the experience-based route 

selection. Hence, it is possible to perform a training phase, 

where all vehicles gather routing experience via multiple 

subsequent simulation runs.   

We implemented all parts of the simulation model, like 

the algorithms for the next atomic step a vehicle takes, the 

choice for a specific route, the generation of an underlying 

lane layout or even the vehicle kinematics in a modular 

way. Hence, single parts of the model and the algorithm can 

be exchanged and extended easily. 

Figure 3. visualization of two different simulation runs. (a) 10 

vehicles operating on a scenario with four loadpoints (small cir-

cles). (b) 25 vehicles operating on a layout with 8 different 

loadpoints (small circles). 

5) CASE STUDY

As the introduction specifies, the focus of this publi-

cation lies on conflict avoidance strategies for completely 

free areas. Hence, the vehicles theoretically have a maxi-

mal degree of freedom when it comes to routing. The case 

study presented in the following consists of an approxi-

mately five-by-five-meter square with the vehicles visiting 

four locations on the edge of the layout in an ongoing ran-

dom order. For this case study we assume that the vehicles 

are round with a diameter of 40 cm.  

The following presents and discusses the results of the 

different approach levels of section 3.2 for defining routing 

rules. For each level we conducted multiple simulation runs 

for up to twelve vehicles. The overall throughput over a pe-

riod of 10.000 time units serves as the key performance in-

dicator. Figure 7 shows the main results for the benchmark 

case and all approach levels using box plots.  
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Figure 4: (a) shortest routes between all loadpoints (b) lanes and 

directions as defined by a human planer (c) directions defined by 

a genetic optimization for a fleet of ten vehicles 

A vehicle routing without any further conflict avoid-

ance serves as a benchmark in the following. Each vehicle 

always travels on shortest distance towards its next desti-

nation (see Figure 4 (a)). Figure 7 (a) shows the reachable 

throughput of multiple simulation runs for various fleet 

sizes in the benchmark case. The transportation system 

with benchmark routing reaches its performance peak with 

a median throughput of 800 executed transports at a fleet 

size of nine vehicles. More than nine vehicles do not lead 

to a further improvement. Instead, the variability of the re-

sults strongly increases due to more routing conflicts. This 

leads to a considerable spread of the throughput (between 

350 and 900 transports) for a fleet size of twelve. 

Level 1 consists of manually designed lanes with man-

ually designed directions (see Figure 4 (b)). The layout 

consists of a combination of an inner loop with clockwise 

direction and an outer loop with anti-clockwise direction. 

On level 1 each vehicle takes the shortest distance with re-

gard to the lanes. Figure 7 (b) shows the resulting through-

put compared to the benchmark strategy. To sum up, for all 

fleet sizes the results of this approach are worse than the 

benchmark. It is obvious that the less amount of conflicts 

reached by vehicles following the lanes does not make up 

for the longer travel distances. Especially for big fleet sizes 

the spread of the results becomes significant.   

Figure 5: improvement of throughput over multiple training runs 

Level 2 combines the manually designed lanes and di-

rections of Level 1 with an experience-based route choice. 

Figure 5 shows the throughput improvement over a training 

phase of about 115 simulation runs for the example of four 

vehicles. Approximately after run 17 and run 60 beneficial 

route choice combinations were found, leading to a major 

improvement in throughput. After a stop criterion is met 

around run 115 the last ten runs were test runs using the 

fully trained experience. Figure 7 (c) shows the results of 

the level 2 approach for all fleet sizes. For a large number 

of vehicles, the transport system performance is better than 

the benchmark. Level 2 reaches the highest median 

throughput (888 transports) with a fleet size of nine.  

In level 3 a human planer does not provide any direc-

tions leading to a higher degree of freedom in the choice of 

a specific route. As explained in section 3.2, it is expected 

that with an experience-based route selection advantageous 

lane directions arise implicitly. Figure 7 (d) shows the re-

sults. While the benchmark performs slightly better for 

smaller fleet sizes, the level 3 approach results in a better 

performance for five vehicles and more. This approach 

reaches its peak of about 900 transports with ten vehicles, 

which is a significant difference to the benchmark strategy. 

Based on the manually designed lanes, level 4 applies 

a genetic algorithm for the direction of the lanes. For each 

fleet size a genetic optimization was performed in advance, 

leading to a specifically tailored layout for each fleet size. 

Figure 4 (c) exemplarily shows the resulting layout of the 

genetic optimization for ten vehicles. Figure 7 (e) shows 

the throughput results for all fleet sizes. Similar to Level 3, 

the benchmark strategy performs better with smaller vehi-

cle fleets. However, with a higher number of vehicles, 

longer travel distances and fewer conflicts pay off. Hence, 

for most fleet sizes, the throughput reached by the level 4 

approach is higher than the results of the benchmark reach-

ing a top performance with a median throughput of 865 

transports with nine vehicles. 

Level 5 bases on the concept of randomly creating 

routes between a source and a destination and an experi-

ence-based route selection. For this case study 20 different 

waypoints for each relation of a start and a destination lo-

cation performed best. So, in total 240 waypoints were cre-

ated. Figure 6 shows an example for the waypoints and 

routes generated between a specific start and destination 

point. Figure 7 (f) shows the results for level 5 compared to 

the benchmark strategy. The level 5 approach performs bet-

ter for three vehicles and higher. With respect to the 

throughput of all other levels, level 5 has the best results of 

all strategies from three vehicles on peaking with ten vehi-

cles and a median throughput of almost 1000 transports. 

Figure 6: example for randomly created waypoints in the 

case study between the start and destination location 
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a. benchmark: no conflict avoidance b. level 1: manual lanes, manual directions, shortest route

c. level 2: manual lanes, manual directions, experience-based

route selection

d. level 3: manual lanes, all directions, experience-based

route selection

e. level 4: manual lanes, directions based on genetic optimiza-

tion, shortest route

f. level 5: random waypoints and experience-based route

selection

Figure 7: Boxplots showing the throughput of the transportation system over different numbers of vehicles. Each diagram com-

pares the results of a specific level of the collision avoidance approach with the benchmark results without any collision avoid-

ance. Box plot properties: bootstrap: median; box: lower and upper quartiles; whiskers: minimum and maximum
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6) CONCLUSION AND FURTHER RESEARCH

In this publication we presented an approach for a de-

centralized conflict avoidance for vehicles with path free 

navigation in a completely free area. The general idea is 

that an offline determination of lanes, directions of lanes 

and choices for specific routes leads to a better routing per-

formance in the sense of a higher throughput. Five levels 

(from mainly manually designed rules to a completely au-

tomated algorithm) were presented for this approach and 

evaluated using a small case study with various numbers of 

vehicles.  

Not all strategies were able to beat the benchmark 

strategy without any conflict avoidance, meaning that 

longer travel distances with less routing conflicts are not 

always a favorable strategy. However, with bigger fleet 

sizes, applying the rules for conflict avoidance generally 

led to better results than the air-line benchmark strategy. 

The fully automated approach led to the best results as the 

vehicles are not restricted to manually designed lanes and 

the entire available space can be used for reaching a desti-

nation. 

 In the future we plan to further improve the algorithm 

with a focus on enhancements of the automated approach. 

Furthermore, an inclusion of reinforcement learning tech-

niques seems promising. In addition to the mentioned im-

provements, we plan to adapt the conflict avoidance strate-

gies on bigger layouts, especially on layouts that include 

static obstacles. Hence, we are able to derive results for 

more realistic scenarios like warehouses and production ar-

eas. 
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