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bstract : The scheduling of activity sequences under 

resource constraints, also known as Resource-Con-

strained Project Scheduling Problem (RCPSP), is a well-

known optimization problem that consists in finding an 

activity execution schedule that minimizes the total dura-

tion of the considered sequence. This problem is generally 

tackled with heuristic and meta-heuristic methods. How-

ever, this paper proposes a different approach based on 

artificial neural networks, used as decision tools, and ma-

chine learning. Moreover, it is shown that such a method-

ology is able to provide good activity execution schedules 

in short time. 

[Keywords: RCPSP, Resource-Constrained Project Scheduling 

Problem, Artificial Neural Networks, Machine Learning, Sched-

uling] 

urzbeschreibung: Die Planung von ressourcenbe-

schränkten Aktivitätsfolgen, bekannt als das res-

sourcenbeschränkte Projektplanungsproblem, ist ein be-

kanntes Optimierungsproblem, das darin besteht, einen 

Ausführungsplan zu finden, der die Gesamtdauer der be-

trachteten Aktivitätsfolge minimiert. Dieses Problem 

wird im Allgemeinen mit heuristischen und meta-heuris-

tischen Methoden gelöst. In diesem Beitrag wird ein alter-

nativer Lösungsansatz vorgestellt, der eine Entschei-

dungsstrategie umfasst, die auf künstlichen neuronalen 

Netzen und maschinellem Lernen basiert. Darüber hin-

aus wird gezeigt, dass ein solcher Ansatz in der Lage ist, 

für Aktivitätsfolgen gute Ausführungspläne in kurzer 

Zeit zu generieren.  

[Schlüsselwörter: RCPSP, Resource-Constrained Project 

Scheduling Problem, Künstliche Neuronale Netze, Maschinelles 

Lernen, Planung] 

1 INTRODUCTION 

The Resource Constrained Project Scheduling Prob-

lem (RCPSP) is a central problem of project scheduling and 

because of its relevance for both academic and practical en-

vironments one of the most studied optimization problems 

[Kol15]. 

In this paper, the deterministic RCPSP is considered. 

Formally, this version of the problem can be expressed as 

a single activity sequence, also called project, consisting in 

a set of J activities with known deterministic durations 𝑑𝑗 

∈ ℕ for each activity j ∈ ℐ. The project is finished when all 

activities have been completed. Furthermore, ℛ is a set of 

K renewable resource types and each resource type r ∈ ℛ 

has a finite capacity 𝑅𝑟 that remains constant throughout 

the project execution. Each activity j requires 𝑟𝑗,𝑟  units of 

each resource type r for its entire execution. It is assumed 

that 0 < 𝑟𝑗,𝑟 < 𝑅𝑟. A solution to an activity sequence is a 

schedule, which is denoted by a vector s = (s1, s2, …, sJ), 

in which sj is the starting time of activity j in the schedule. 

The starting times are restricted to integer values and must 

respect a given set of precedence constraints. Considering 

Figure 1, each of these constraints is represented as an ar-

row connecting two activities (numbered blocks), which 

means that the activity at the tip of the arrow can only be 

started if the activity at the beginning has been completed. 

 

Figure 1: Example of activity sequence. The activity duration is 

represented above the block while the required resources 

are listed below. 

In consideration of the previous definitions, the 

RCPSP for a given activity sequence or project p can con-

ceptually be formulated as the minimization of the project 

A 

K 
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makespan 𝑀𝑆𝑝, i.e. the time required to complete all activ-

ities. 

Surveys of solution methods for the RCPSP are pro-

vided in [Dem06] and [Neu12] and the scheduling algo-

rithms for the considered problem can generally be divided 

into three classes: exact methods (e.g. [Dem92]), heuristics 

(e.g. [Kol99]) and meta-heuristics (e.g. [Fan15]). 

Exact methods are capable of computing schedules 

that are associated with the lowest possible project 

makespan and hence achieve the best possible solutions. 

However, according to [Abd14], these methods are limited 

to computing the optimal solution only for projects having 

a maximum number of around 30 to 50 activities, since a 

growing number of considered activities in the project 

leads to an increasing project complexity and consequently 

a rapidly increasing computing time. On the other hand, 

heuristics, which are mostly rule-based algorithms [Har99], 

provide a decent solution within a reasonable computing 

time which is why they are applicable to much larger and 

more complex activity sequences. The last category are the 

meta-heuristics, which are general, often nature inspired al-

gorithmic frameworks designed to solve complex optimi-

zation algorithms [Bia09]. They generally provide better 

solutions than the heuristics but usually require more com-

puting time. 

Machine learning approaches have almost never been 

used in the literature to solve the RCPSP. Only one contri-

bution on machine learning approaches for the project 

scheduling problem could be retrieved. In [Ada18] ma-

chine learning was applied to dynamically choose the right 

priority rule with the best performance among a set of pre-

defined simple priority rules at every point in time to assign 

priorities to the project activities. However, the approach 

was used to solve very small projects with only 11 activities 

considering 13 different priority rules. 

In this paper, a preliminary investigation of applying 

machine learning in the context of the RCPSP is conducted. 

In particular, the aim of this work was to explore the use of 

trained artificial neural networks as an activity scheduling 

tool. 

In robotics, deep neural networks have already been 

widely employed. In this field, object recognition is one of 

the most common tasks tackled with convolutional neural 

networks [Kri12]. This problem can also be seen as a deci-

sion-making task since the neural network must decide 

which object is in an image among a set of predefined ob-

jects that the neural network has been trained to recognize. 

Grasping objects is another common robotic task which has 

recently been mastered with artificial neural networks be-

ing applied to computer vision. [Col18]. In this task, alt-

hough the input information is still an image, the output of 

the neural network identifies how the gripper should grasp 

the object. 

Deep neural networks have been successfully applied 

to master different types of games as well. In this case, the 

decision-making process takes the current state of the 

game, e.g. the image displayed by the monitor at the deci-

sion point, as input to the neural network and then decides 

what should be the next move. For example, [Mni15] and 

[Hos16] have applied this concept to the Atari games. 

One of the first ideas of applying neural networks in 

the field of production and logistics originated from 

[Leu95]. However, in this work, the potential of neural net-

works in this field is only assessed from a theoretical point 

of view. Later on, [Efe09] and [Koc15] successfully ap-

plied neural networks to demand forecasting to support the 

supply chain management, while [Sil17] has investigated 

the problem of supply chain vulnerability and visibility 

with a similar approach by predicting the supply chain ca-

pacity to fulfil incoming orders and to anticipate the next 

node receiving an order. 

2 APPLYING DEEP NEURAL NETWORKS ON THE 

RCPSP 

In this section, the preliminary idea of applying deep 

neural networks on the Resource-Constrained Project 

Scheduling Problem (RCPSP) as a decision tool is pre-

sented and the methodology is described. In particularly, 

although deterministic activity durations are considered, 

the goal is to design a reactive scheduling policy, namely a 

policy that defines at each decision point which activities 

should be immediately started. The advantage of such a 

step by step reactive policy over a policy that defines all 

starting times at once is that no schedule disruptions occur 

if the real activity durations deviate from the assumed ones. 

Figure 2 represents an example of a decision point 

where activity 1 has already been completed while activity 

2 and 3 are “ready to start”. The example has been taken 

from the same activity sequence of Figure 1. 

 

Figure 2: Example of decision point where activity 2 and 3 are 

“ready to start”. 

2.1 INPUT STRUCTURE 

In general, a neural network is a computing system 

that can process some input information of predefined size 

and return some output values. 

http://nbn-resolving.de/urn:nbn:de:0009-14-29382
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In a decision problem, the input values may represent 

the current state of the system which is the information the 

decision is based on. In the context of the RCPSP, at each 

decision point 𝑡𝑑 during the execution of the activity se-

quence, there are the following pieces of information:  

• “Ready to start” activities, i.e. the activities that 

could be scheduled at 𝑡𝑑 and, as a result, are con-

sidered in the decision. 

• “In progress” activities, i.e. the activities that have 

already been started. 

• “Future” activities, i.e. the activities that have not 

yet been started and cannot be scheduled at 𝑡𝑑. 

• The precedence constraints among the activities 

mentioned in the previous three bullet points. 

• The current availability of each resource type 𝐴𝑟. 

• The total number of resources for each resource 

type 𝑅𝑟. 

With the methodology presented below, the input in-

formation is converted into two objects: an input vector and 

an input matrix. 

The input vector, denoted as 𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 , in-

cludes the information about the “ready to start” activities 

and the currently available resources to start them. Regard-

ing the example in Figure 1, where there are the two re-

source types (A and B), and considering a maximum num-

ber of considered “ready to start activities” 𝑅𝑚𝑎𝑥 equal to 

3, the input vector is structured as follows: 

𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠  = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑1  · 𝑅𝐹

𝑟1,𝐴 

𝑅𝐴
𝑟1,𝐵 

𝑅𝐵

𝑑2  · 𝑅𝐹
𝑟2,𝐴 

𝑅𝐴
𝑟2,𝐵 

𝑅𝐵

𝑑3  · 𝑅𝐹
𝑟3,𝐴 

𝑅𝐴
𝑟3,𝐵 

𝑅𝐵

𝐴𝐴 

𝑅𝐴

𝐴𝐵 

𝑅𝐵 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The RF is a rescale factor that normalizes the activity 

duration 𝑑𝑗, while the 𝑅𝐴 and 𝑅𝐵 normalize the resource 

consumption 𝑟𝑗,𝐴 and 𝑟𝑗,𝐵 respectively. The ratio between 

𝑟𝑗,𝑟 and 𝑅𝑟 is called normalized resource utilization of ac-

tivity j and resource type r and denoted as 𝑁𝑅𝑈𝑗,𝑟. For in-

stance, considering a rescale factor of 0.1, the decision 

point in Figure 2 results in the following input vector: 

𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠  = 

[
 
 
 
 
 
 
 
 
 
 
0.2
1
0

0.3
1
1
0
0
0
1
1 ]

 
 
 
 
 
 
 
 
 
 

 

It is important to notice that activity 2 has taken the 

first position in the vector, while activity 3 has taken the 

second. The vector positions dedicated to the third “ready 

to start” activity are set to 0 since there are only two “ready 

to start” activities at this decision point. 

The second piece of information is the input matrix, 

which is a K x T matrix, where K is the number of resource 

types and T is the considered time horizon in time units. A 

generic element 𝑀𝑟,𝑡 of the input matrix 

𝑀𝐹𝑢𝑡𝑢𝑟𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 represents the ratio between the 

future resource utilization 𝑈𝑟,𝑡,𝐹𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒  for the re-

source type r at time t+𝑡𝑑 if the activities were scheduled 

without considering the resource constraints (fictitious 

schedule) and the total resource availability 𝑅𝑟. 

𝑀𝐹𝑢𝑡𝑢𝑟𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = [
𝑀𝐴,1 𝑀𝐴,2 𝑀𝐴,3 𝑀𝐴,4

𝑀𝐵,1 𝑀𝐵,2 𝑀𝐵,3 𝑀𝐵,4
] 

With 𝑀𝑟,𝑡 = 
𝑈𝑟,𝑡,𝐹𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑅𝑟
 

At the decision point depicted in Figure 2, the fictitious 

schedule, i.e. an unrealistic scheduled obtained without 

considering the resource constraints, shown in Figure 3 is 

obtained. 

 

Figure 3: Fictitious schedule 

This fictitious schedule results, for instance, in the fol-

lowing input matrix: 

𝑀𝐹𝑢𝑡𝑢𝑟𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = [
2 2 1 0
1 1 1 1

] 
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It is important to notice that the fictitious schedule has 

only been considered for the first 4 time units which is the 

value of the time horizon T. 

2.2 NEURAL NETWORK STRUCTURE 

Once the above described input information is created, 

it is possible to process it with a neural network. The neural 

network structures considered in this paper are composed 

of different sub-neural networks which are denoted as 𝑁𝑁1, 

𝑁𝑁2 and 𝑁𝑁𝑓𝑖𝑛𝑎𝑙 . The 𝑁𝑁1 receives 𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠  

as an input and it can be either a fully-connected, a 1-di-

mensional convolutional or a 2-dimensional convolutional 

neural network. The 𝑁𝑁2 receives 

𝑀𝐹𝑢𝑡𝑢𝑟𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 as an input and it is always a 2-

dimensional convolutional neural network. In some config-

urations, the input matrix is not included as input infor-

mation and, as a result, also the 𝑁𝑁2 is obsolete. The 

𝑁𝑁𝑓𝑖𝑛𝑎𝑙  takes the intermediate values that are returned by 

𝑁𝑁1 and 𝑁𝑁2 and generates the final output values. 

In this paper, four different neural network structures 

are considered and compared: 

1. The CONV1D structure, which does not include 

the input matrix (see Figure 4) and where 𝑁𝑁1 is 

a 1-dimensional convolutional neural network. 

2. The CONV2D structure, which does not include 

the input matrix (see Figure 4) and where 𝑁𝑁1 is 

a 2-dimensional convolutional neural network. 

3. The CONV1D-FRU structure, which includes the 

input matrix (see Figure 5) and where 𝑁𝑁1 is a 1-

dimensional convolutional neural network. 

4. The CONV2D-FRU structure, which includes the 

input matrix (see Figure 5) and where 𝑁𝑁1 is a 2-

dimensional convolutional neural network. 

 

Figure 4: Neural network structure without the input matrix for 

CONV1D and CONV2D 

 

Figure 5: Neural network structure with the input matrix for 

CONV1D-FRU and CONV2D-FRU 

The neural network structures are characterized by the 

following hyperparameters: 

• Maximum number of considered "ready to start" 

activities 𝑅𝑚𝑎𝑥 equal to 6. 

• Time horizon T equal to 10. 

• Number of hidden layers in 𝑁𝑁1, 𝑁𝑁2 and 

𝑁𝑁𝑓𝑖𝑛𝑎𝑙  equal to 5. 

• Number of neurons per layer in the fully con-

nected neural network 𝑁𝑁𝑓𝑖𝑛𝑎𝑙  equal to 512. 

• Number of filters per layer in the convolutional 

neural networks 𝑁𝑁1 and 𝑁𝑁2 equal to 64. 

• Number of epochs 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 during the training 

equal to 11. 

• Learning rate α equal to 10−4. 

• Dropout value σ equal to 60%. 

In this preliminary investigation, no hyperparameter tun-

ing has been performed but instead the values have been 

chosen manually. 

2.3 OUTPUT STRUCTURE AND DECISION PROCESS 

Once the input information is processed through the 

neural network structure, an output vector whose number 

of values is equal to the maximum number of considered 

"ready to start" activities 𝑅𝑚𝑎𝑥 is obtained. Each element 

of this vector represents a priority value 𝑃𝑉𝑗 that will be 

assigned to its corresponding "ready to start" activity j. In 

the example presented in Figure 4 and Figure 5, the first 

element refers to activity 2, the second to activity 3 and the 

third to no activity at all, since there are only two “ready to 
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start” activities at this decision point. The order of the out-

put values corresponds to the order that is used to create the 

𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 . 

With the priority values assigned to the “ready to start” 

activities, it is possible to define which activities should be 

started. After having reordered the activities with descend-

ing priority values, the possibility to start them one after 

each other is evaluated. As soon as enough resources are 

available to schedule an activity at the decision point 𝑡𝑑, 

the required resources are allocated and the activity is 

started. 

2.4 TRAINING DATA GENERATION 

For the training of the neural networks, a supervised 

learning approach has been chosen. As a result, a big num-

ber of state-action pairs are required, namely training data 

where the target output of the neural network (action) is 

coupled to its correspondent input information (state). The 

state consists in the 𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 alone for the first 

two neural network structures and both 

𝑉𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝑆𝑡𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠  and 𝑀𝐹𝑢𝑡𝑢𝑟𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 for 

the other ones. The definition of the target output (action) 

is defined as a vector of zeros and ones. Assuming that the 

optimal set of activities to be started in a certain state is 

known, the target output is defined as a vector of the same 

length as the vector of the priority values where there is a 1 

in a position if the correspondent activity should be started, 

otherwise a 0. 

Considering, for example, the structure of Figure 4 and 

assuming that activity 3 should be started, the target values 

of Figure 6 should be used for the correspondent state-ac-

tion pair. 

 

Figure 6: Neural network structure without the input matrix with 

target output values 

With this methodology, the training data are then gen-

erated by means of simulation. In particular, for each pro-

ject of the training project set, the project is executed 

10.000 times with a random policy (RAN) and the run with 

the lowest makespan is taken into consideration. For each 

decision point of the best run, the state-action pairs are ex-

tracted and added to the training data. 

Assuming to have a total number of projects equal to 

𝑃𝑡𝑜𝑡, it is possible to divide them into a training set 

ℙ𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, with which the state-action pairs will be created, 

and a test set ℙ𝑡𝑒𝑠𝑡 , on which the trained neural network 

will be tested as a scheduling tool. For the results presented 

in this paper, 100.000 projects were considered in total and 

they have been divided with an 80:20 split into training and 

test projects. With the 80.000 training projects, 1.236.378 

state action-pairs have been generated. 

3 EVALUATION 

In this section, the training process and the final results 

are presented. All results are measured with the so-called 

AIP performance indicator, which is explained as well in 

the following paragraphs. 

3.1 PERFORMANCE MEASUREMENT 

In order to evaluate the performances of the schedul-

ing decision policies, an evaluation tool is required, which 

for the RCPSP is generally a simulation tool [Van16]. Also 

in this work, the results have been generated with a simu-

lation tool, which is used to build an environment where an 

event-driven simulation can run and where the total project 

makespan using a certain scheduling policy can be meas-

ured. 

Since the goal is not to train a neural network able to 

solve only a single activity sequence, a large set of projects 

must be considered to both generate the training data and 

test the trained neural network. 

Considering the project set ℙ𝑡𝑒𝑠𝑡  composed by a num-

ber of projects equal to 𝑃𝑡𝑒𝑠𝑡 , it is possible to define a per-

formance indicator called average improvement percent-

age, shortly AIP, defined as follows: 

𝐴𝐼𝑃𝛱  = 
∑

𝑀𝑆𝑝,𝑅𝐴𝑁 − 𝑀𝑆𝑝,𝛱

𝑀𝑆𝑝,𝑅𝐴𝑁
𝑝∈ℙ𝑡𝑒𝑠𝑡

𝑃𝑡𝑒𝑠𝑡
 

The RAN policy stands for random and it is a reactive 

scheduling policy where the priority values are assigned 

randomly to the “ready to start” activities at each decision 

point. 

3.2 PROJECT GENERATOR 

Since a big set of training projects is necessary for the 

training data generation, a project generator was required. 

Two main project generators are available in the literature, 

namely the ProGen [Spr96] and the RanGen2 [Van08]. 

However, these generators were not completely suitable for 

the scope of this thesis because, for instance, they do not 

allow the user to also randomize the number of activities 

within each project. As a result, for this paper a newly de-

veloped project generator has been developed by the author 

and the 100.000 projects mentioned above have been gen-

erated with it. The new project generator, which is mainly 

based on the generation rules of the ProGen, has the fol-

lowing characteristics: 
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• Number of activities per project between 30 and 

120. 

• Each activity sequence starts and ends with ex-

actly 3 activities. 

• Each activity is followed and preceded by a num-

ber of activities between 1 and 3. 

• The activity duration is between 1 and 10 time 

units. 

• There are 4 resource types and each with capacity 

𝑅𝑟 equal to 10. 

• The maximal number of required resource types 

𝐾𝑚𝑎𝑥  per activity is between 1 and 4. This param-

eter determines how many different resource 

types each project activity needs at maximum and 

it also represents a property of the project. 

• Each activity only requires 𝐾𝑗 different resource 

types. The value of 𝐾𝑗 is between 1 and 𝐾𝑚𝑎𝑥 . For 

each activity, the 𝐾𝑗 required resource types are 

randomly chosen among the K resource types. 

• The resource consumption 𝑟𝑗,𝑟 of activity j and re-

quired resource type r is between 1 and 10. 

All random variables are uniformly distributed and 

discrete.  

3.3 TRAINING PROCESS 

Once the state-action pairs are generated, it is possible 

to begin the training process during which the neural net-

work weights are adjusted. After each training epoch, each 

neural network is tested on the test projects and the corre-

spondent performances are shown in Figure 7. 

 

Figure 7: Intermediate AIP performance indicator on the test 

projects during the training after each epoch 

It is possible to notice that all neural networks, after a 

random initialization of the weights, keep improving in 

scheduling the activities of the 20.000 unseen test projects. 

The first epoch is related to the highest improvement in all 

four trainings, while the following epochs involve much 

smaller improvements until a plateau is reached where the 

performances seem to remain stable. 

It appears that no overfitting occurred during the train-

ing since the AIP on the unseen test project does not visibly 

decrease after the plateau is reached. However, the fact that 

the highest AIP is reached before the 11th epoch may sug-

gest that a lower number of epochs should be used. 

3.4 RESULTS 

Figure 8 shows the AIP performances on the test pro-

jects after the training for the four proposed neural net-

work-based reactive scheduling policies. The two schedul-

ing policies that include the future resource utilization 

perform better than the ones that do not include the addi-

tional information. 

The neural network structure with the best perfor-

mance after the 11th epoch is the CONV1D-FRU with an 

AIP of 3,874% followed by the CONV2D-FRU which has 

a similar AIP of 3,841%. Since the activity durations are 

deterministic, the AIP values have no standard deviation 

and no confidence interval must be created to assess if there 

is a statistical evidence that CONV1D is better than 

CONV2D. 

 

Figure 8: Performance comparison among the proposed reactive 

scheduling policies 

Figure 9 shows the decision times, i.e. the time the 

scheduling policies require on average to assign the priority 

values to the “ready to start” activities. 

 

Figure 9: Decision time comparison among the proposed reac-

tive scheduling policies 
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The results have been generated with a hardware with 

the following characteristics: 

• CPU: AMD Ryzen 7 2700X, 8 cores (16 threads), 

3.70GHz (max. 4.30GHz) 

• RAM: 4x 16GB G.Skill Aegis DDR4-3000 

DIMM CL16 

• GPU: Nvidia GeForce RTX 2080, 3072 CUDA 

cores, 1845MHz, 8GB of RAM 

The utilized software and libraries are: 

• Python programming language (simulation envi-

ronment) 

• Tensorflow (creation and training of the neural 

networks) 

4 CONCLUSIONS 

In this work, an approach based on artificial neural net-

works and machine learning is proposed to design reactive 

decision tools for the RCPSP. In particular, the neural net-

works are used to create priority values for the “ready to 

start” activities based on the current state of an RCPSP pro-

ject instance. Depending on the extent of the information 

used to represent the project’s state, four different neural 

network structures have been developed. The training of 

these structures involved a supervised learning approach in 

which the neural networks learned the mapping from pro-

ject states as input to actions that define the next to be 

started activity as output. The training of the neural net-

work architectures required a large volume of training data 

which is why a newly developed project generator has been 

used to generate random activity sequences. An evaluation 

of the four neural network structures has shown that they 

can learn how to schedule the activities increasingly better 

over time and they require short decision times. 

However, this preliminary investigation is only a first 

step towards the application of deep learning methodolo-

gies in the context of the RCPSP. The hyperparameters of 

the tested neural network architectures have been chosen 

manually, thus it is likely that a carefully conducted hy-

perparameter tuning process increases the performance of 

the suggested decision-making approach even more. Fur-

thermore, in this investigation, the activity durations were 

assumed to be deterministic while in practice this assump-

tion is often violated. Since the proposed approach is a re-

active scheduling policy, its true scheduling potential could 

be tested with stochastic activity durations. 
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