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utomated guided vehicles are designed for internal 
material transport in production and warehouse en-

vironments. To do this, transport orders must be assigned 
to the vehicles. In addition, the vehicles often have an elec-
tric drive. The batteries required for this are discharged 
during operation.  Therefore, it must be decided when the 
vehicles must go to a charging station. This control option 
is often ignored and the vehicles are only sent for loading 
when the battery has (almost) completely discharged. In 
this work, a procedure that simultaneously solves the as-
signment of jobs and the decision when a vehicle should 
drive to a charging station is presented and evaluated. It 
is based on neural networks trained by genetic algo-
rithms. The evaluation shows that the presented method 
delivers better results than a method that combines the 
"First-Come-First-Served" and the "Nearest-Vehicle-
First" methods and in which the charging processes are 
controlled by a fixed battery threshold. 

 [Keywords: Automated guided vehicles, AGV, job assignment, 
energy management, neural networks, genetic algorithms] 

ahrerlose Transportsysteme dienen dem innerbe-
trieblichen Materialtransport im Produktion- und 

Lagerumfeld. Dafür müssen den Fahrzeugen Trans-
portaufträge zugeordnet werden. Außerdem haben die 
Fahrzeuge oft einen elektrischen Antrieb. Die dafür nöti-
gen Akkubatterien werden im Betrieb entladen, sodass 
zusätzlich entschieden werden muss, wann die Fahrzeuge 
zu einer Ladestation fahren sollen. Diese Steuerungsmög-
lichkeit wird oft ignoriert, sodass die Fahrzeuge nur zum 
Laden geschickt werden, wenn sich die Batterie (fast) 
vollständig entladen hat. In dieser Veröffentlichung wird 
ein Verfahren vorgestellt und evaluiert, das die Auftrags-
zuordnung sowie die Entscheidung, wann ein Fahrzeug 
zu einer Ladestation fahren soll, gleichzeitig löst und auf 
von genetischen Algorithmen trainierten neuronalen Net-
zen basiert. Die Versuche zeigen, dass das vorgestellte 
Verfahren bessere Ergebnisse liefert als ein Verfahren, 
das eine Kombination aus „First Come First Served“- 
und dem „Nearest Vehicle First“-Verfahren darstellt und 

bei dem Aufladevorgänge nur eingeleitet werden, wenn 
die Fahrzeugbatterie einen Grenzwert unterschreitet.  

[Schlüsselwörter: Fahrerlose Transportsysteme, FTS, Auftrags-
vergabe, Energieverwaltung, neuronale Netze, genetische Algo-
rithmen] 

1 INTRODUCTION 

Due to advances in laser scanner-based navigation and 
safety technology, automated guided vehicle systems 
(AGV) are becoming increasingly common in factories and 
warehouses. AGVs, such as KARIS PRO [Col16], can 
transport a wide variety of goods by using exchangeable 
modules (as Figure 1 shows). Today, the vehicles can drive 
freely and without additional infrastructure within the fa-
cilities. This significantly simplifies the installation and 
(re-)configuration of such systems. The increasing flexibil-
ity means that AGVs are more and more applicable to a 
wide range of scenarios.  

 
Figure 1: Representation of possible applications of the vehicles 

of the project KARIS PRO in a production environment 

However, the controls for transport job assignment are 
system-specific. This is why special strategies must be 
found for each system. These are usually heuristics that do 
not offer an optimal solution. Finding a suitable heuristic is 
difficult. A new approach is the use of neural networks to 
control the job assignment [Pag17]. 
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On the other hand, many AGVs have built-in batteries 
which feed their control boards, the motors and the sensors. 
As a result, the batteries are discharged during operation. 
This is why at some point, the vehicles must go to a charg-
ing station to recharge the batteries. Once the desired bat-
tery level has been restored, they can take new transporta-
tion jobs. While charging vehicles can’t be used for job 
processing and the throughput of the entire system will de-
crease. This is why a mechanism for controlling the charg-
ing cycles of the vehicles is required but usually ignored 
[LeA06].  

A better job assignment policy and energy manage-
ment can lead to a higher throughput, lower operating costs 
and/or a lower number of required vehicles. This is why we 
have developed a combined job and energy management 
policy which is based on neural networks which have been 
trained by genetic algorithms. 

This research paper is organized as follows: In section 
2 the standard job assignment and energy management 
methods are discussed. In section 3 we will explain how the 
system has been modelled. In section 4 we will describe 
how the neural network works and how it has been trained. 
In section 5 we will carry out a case study. Finally, we will 
describe the conclusions in section 6.  

2 MANAGEMENT POLICIES 

As mentioned in chapter 1, the management of AGVs 
has to tackle two main problems simultaneously, namely 
the job allocation and the energy management. 

2.1 JOB ALLOCATION 

As defined in [Pag17], the loading and unloading pro-
cess of AGVs on the vehicles occurs at dedicated stations, 
which will be denoted in this paper as material sources and 
material destinations. The goal of AGVs is to pick up the 
material units from material sources and bring them to the 
correspondent material destinations. For each transporta-
tion, these two tasks are summarized in a job which has to 
be assigned to a vehicle before its execution. Whenever a 
job can be assigned to more than one idle vehicle or an idle 
vehicle can get more than one available job, a decision pol-
icy is required. A range of decision policies for this kind of 
dispatching problem can be found in [LeA06]. 

2.2 ENERGY MANAGEMENT 

Although energy management has a great influence on 
the performance of an AGV system, it has so far been 
widely neglected in research. 

Both [McH95] und [Ebb01] show the negative impact 
of a missing energy management by using a simulation ex-
periment.  

As defined in [McH95] two fundamental distinctions 
as to how the energy supply of the vehicles can be ensured: 

• Changing the batteries (manually or automati-
cally) 

• Charging the batteries at stations or while driving 

According to him there are three situations where an 
energy management can be omitted: 

• There are sufficiently long breaks between shifts 
and the shifts are so short that the batteries are not 
completely discharged. 

• The vehicles are so underutilized that they always 
have the possibility to charge energy without or-
ders therefore not being able to be processed. 

• The vehicles can be charged sufficiently with en-
ergy while driving. 

As the vehicles we consider have a built-in battery and 
navigate freely (i.e. have no fixed routes), we will focus on 
the charging of batteries at dedicated stations. As the charg-
ing time is relatively long in comparison to the transport 
times, charging will only take place between to jobs. We 
also have no breaks, the vehicles are used constantly and 
the shifts are sufficient long so that all vehicles will have to 
go to a charging station regularly. 

2.3 META-HEURISTIC MANAGEMENT POLICIES 

In most recent literature, many meta-heuristic manage-
ment strategies [Abd14] have been developed and applied 
in different scheduling problems like project scheduling or 
job shop scheduling. They have generally outperformed 
heuristics in most of the cases [Leu15] by finding good so-
lutions with less computational effort [Blu03]. One of the 
most promising group of meta-heuristic algorithms are the 
neural network-based strategies, like for example [Fen03], 
[Foo88] and [Par00]. They are able to link the current sys-
tem state to the decision to be taken with very complex re-
lations. The description of this relations by heuristic strate-
gies is very difficult. The decisions are identified by 
topology, the weights and thresholds of the neural network 
itself. As a result, they perform well in comparison to other 
heuristic and meta-heuristic methods, when the relations 
between the current system state and the best decision are 
complex and, sometimes, not intuitive. Moreover, those 
strategies can also be combined with other heuristics or 
meta-heuristics [Hai01]. 

In this paper, the combination between a neural net-
work-based policy and a genetic algorithm, in a similar way 
to the one applied to the project scheduling in [Aga11], has 
been proposed and tested to design a neural network-based 
decision tool for the job assignment of AGVs 



DOI: 10.2195/lj_Proc_pagani_en_201811_01 
URN: urn:nbn:de:0009-14-47433 

  
© 2018 Logistics Journal: Proceedings – ISSN 2192-9084          Page 3 
Article is protected by German copyright law 

3 SYSTEM MODELLING 

In this section, the modelling of the problem under in-
vestigation is explained. The model is composed by five 
main modelling objects: material units, material sources, 
material destinations, charging stations and vehicles. For 
instance, Figure 2 represents an example of system com-
posed by two material sources, two material destinations, 
two charging stations and two vehicles. 

 

Figure 2: Example of system with two material sources (four 
buffer places each), two material destinations (four buffer 
places each), two charging stations and two vehicles. 

The material units (in Figure 2 depicted as full squares 
and denoted by the letter “M”) represent some group of 
goods, which can be identified by a common container or 
carrier, for example a box, a transportable shelf or a pallet. 
They are supplied from the upstream part of the logistic 
chain to the material sources. Once they lay on the material 
source, the AGVs are in charge to bring them to the right 
material destination. Once they arrive at the material desti-
nations, they can be withdrawn to continue in the down-
stream part of the logistic chain. 

The material sources (in Figure 2 depicted as empty 
squares and denoted by the letters “MS” followed by a 
number) are dedicated stations where the material units 
constantly arrive with an arrival process described by a 
Gaussian distributed interarrival time. Those stations are 
also characterized by a maximum number of buffer places 
and by (x,y) coordinates in a 2D layout. When a new mate-
rial unit is about to arrive, and all buffer places are busy 
(see MS2 in Figure 2), it is assumed that this material unit 
does not enter the considered system. As a result, each ma-
terial unit that cannot be delivered to a material source con-
tributes to lower the total system throughput and thereby 
lowers the objective function of the model. 

The material destinations (in Figure 2 depicted as 
empty squares and denoted by the letters “MD” followed 
by a number) are dedicated stations where the material 
units are constantly withdrawn with a Gaussian distributed 
interdeparture time. As for the material sources, those sta-
tions are also characterized by a maximum number of 
buffer places and by (x,y) coordinates in a 2D layout. When 
a material unit is required to be withdrawn at a material 
destination and no material unit are available in it (see MD1 
inFigure 2), it is assumed that the demand is lost. As a re-
sult, each material unit that cannot be withdrawn from a 
material destination also contributes to lower the total sys-
tem throughput. 

The vehicles are the AGVs which the transportation 
jobs, i.e. the transportation of a material unit from one ma-
terial source to one material destination, can be assigned to. 
Once they have completed a transportation job, they wait 
in an idle state at the material destination where they have 
delivered the last transported material unit. They represent 
the limiting resource, i.e. the higher their number, the 
higher the throughput, if the saturation has not been 
reached yet and if there are no blocking effects due to high 
traffic. They are characterized by the moving speed and a 
loading/unloading time, i.e. an additional time that is re-
quired to perform the loading/unloading process of the ma-
terial unit on the vehicle, e.g. fine positioning, load transfer, 
etc. 

The dispatching of the material is defined by a dis-
patching matrix DM, whose element 𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗 identifies the 
probability that a material unit arriving at the material 
source i must be delivered at the material destination j. As 
a result, it has a number of rows equal to the number of 
material sources and a number of columns equal to the 
number of material destinations. In the case depicted in 
Figure 2, where each material source is coupled to a mate-
rial destination, the dispatching matrix is as follows:  

DM =  �1 0
0 1� 

In addition to [Pag17], the charging stations (in Figure 
2 depicted as empty squares and denoted by the letters 
“CS” followed by a number) are also included. They repre-
sent the location where the AGVs can recharge their batter-
ies. Those stations are characterized by a maximum num-
ber of simultaneously loading vehicles and by (x,y) 
coordinates in a 2D layout. 

4 STRUCTURE OF THE NEURAL NETWORK-BASED 
GENETIC ALGORITHM 

In this section, it is explained how the neural network-
based genetic algorithm works and how it can be trained 
without training samples by using a genetic algorithm. 
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4.1 NEURAL NETWORK AS DECISION TOOL 

Artificial neural networks (ANN) are inspired by bio-
logical neural networks. As stated in [DaS16], ANN consist 
of multiple computational components (artificial neurons). 
These neurons receive numeric signals as input and trans-
form them (if an activation potential is exceeded) by a spe-
cific function into a numeric output signal.  

Each ANN is organized in layers which are connected. 
There are three different types of layers.  

• The input layer consists of neurons which re-
ceive a state vector (one input node for each ele-
ment of the state vector) representing the current 
state of the system (e.g. 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 , see Fig-
ure 3).  

• The output layer consists of neurons which 
transmits a vector representing the output value. 
(e.g. 𝑦𝑦1, 𝑦𝑦2, …, 𝑦𝑦𝑚𝑚, see Figure 3). Each output 
neuron is assigned to a possible decision.  

• The neurons in the hidden layer receive 
weighted signals from neurons of the previous 
layer (input layer or previous hidden layer), 
transform them and transmit them to neurons of 
the next layer (next hidden layer or output 
layer). 

 

Figure 3: Example of multi-layer artificial neural network 
[DaS16] 

 

An ANN has one input layer, one output layer and a 
variable number of hidden layers.  

The ANN we use in our work performs as follows: 
Each time a decision is necessary (e.g. a vehicle has fin-
ished a job and gets idle or a new job is created) the current 
system state is transformed to a state vector and is given to 
the ANN. The neurons of the input layer transform the in-
put signals to output signals and transmit them to the next 
layer where the signals are then again processed and trans-
mitted to the next layer and so on. In the end the signals 
arrive at the neurons of the output layer where each neuron 
representing a possible decision provides a value. Based on 

this value the decisions are ranked and the decision with the 
highest rank which is currently possible (e.g. there are still 
idle AGVs or material units to be assigned) is executed.  

In this work, the following parameters have been cho-
sen as input information: 

• Number of material units at each material source 

• Number of material units at each material destina-
tion 

• Number of idle vehicles at each material destina-
tion 

• Number of loaded vehicles heading to each mate-
rial destination 

• Battery level of each vehicle 

As a result, if we call 𝑁𝑁𝑀𝑀𝑀𝑀 the number of material 
sources, 𝑁𝑁𝑀𝑀𝑀𝑀 the number of material destinations, 𝑁𝑁𝐶𝐶𝑀𝑀 the 
number of charging stations and 𝑁𝑁𝑉𝑉 the number of vehicles, 
the number input nodes (elements of input state vector) is 
equal to 𝑁𝑁𝑀𝑀𝑀𝑀 + 3* 𝑁𝑁𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑉𝑉. For what concerns the num-
ber of output neurons, it is equal to the number of decisions. 
For this case, two types of decisions can be taken, i.e. each 
idle AGV can be either get a transportation job or can be 
sent to a charging station. As a result, the number of possi-
ble decisions, is equal to 𝑁𝑁𝑉𝑉*𝑁𝑁𝑀𝑀𝑀𝑀*𝑁𝑁𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑉𝑉*𝑁𝑁𝐶𝐶𝑀𝑀. 

Figure 4 and Figure 5 show how the neural network is 
structured in the case depicted in Figure 2 and assuming 
one additional hidden layer with 11 neurons. In particular, 
in Figure 4 represents the chosen state vector and the struc-
ture of the input layer, while Figure 5 focuses on the output 
layer and how on the relation between output values and 
decisions are related. In Figure 4, the following abbrevia-
tions are used: 

• “𝑛𝑛𝑀𝑀 in 𝐷𝐷𝑀𝑀𝑖𝑖” denotes the number of material units 
in the 𝑖𝑖𝑡𝑡ℎ material source. 

• “𝑛𝑛𝑀𝑀 in 𝐷𝐷𝐷𝐷𝑗𝑗” denotes the number of material units 
in the 𝑗𝑗𝑡𝑡ℎ material destination. 

• “𝑛𝑛𝐼𝐼𝑉𝑉 in 𝐷𝐷𝐷𝐷𝑗𝑗” denotes the number of idle vehicles 
waiting in the 𝑗𝑗𝑡𝑡ℎ material destination. 

• “𝑛𝑛𝑉𝑉 to 𝐷𝐷𝐷𝐷𝑗𝑗” denotes the number of loaded vehicles 
heading to the 𝑗𝑗𝑡𝑡ℎ material destination. 

• “%𝐵𝐵 of 𝑉𝑉𝑘𝑘” denotes the battery percentage of the 
𝑘𝑘𝑡𝑡ℎ vehicle. 
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Figure 4: Input structure of the artificial neural network in the 
case represented in Figure 3. 

In Figure 5, the values of the output vector are output 
values of the last layer of neurons, while the correspondent 
decisions are denoted either with the abbreviation “𝑉𝑉𝑘𝑘 
transports from 𝐷𝐷𝑀𝑀𝑖𝑖 to 𝐷𝐷𝐷𝐷𝑗𝑗” (the transportation job of a 
material unit, whose destination is the 𝑗𝑗𝑡𝑡ℎ material destina-
tion and which lays in the 𝑖𝑖𝑡𝑡ℎ material source, is assigned 
to the 𝑘𝑘𝑡𝑡ℎ vehicle) or with “𝑉𝑉𝑘𝑘 go to charging station 𝐶𝐶𝑀𝑀𝑙𝑙”, 
where 𝑉𝑉𝑘𝑘 stands for the 𝑘𝑘𝑡𝑡ℎ vehicle. 

The position and state of the material units and of the 
vehicles changes during operation and, as a result, the state 
vector changes as well. This is why the ANN may suggest 
a different decision for each different state of the system. If 
a decision cannot be executed (e.g. the suggested vehicle is 
already occupied) the decision with the second highest 
ranking will be chosen and so on.  

In order to avoid that the vehicles go charging with 
high battery levels, it has been set that, if the battery level 
is greater than 50%, a vehicle is never sent to a charging 
station. Secondly, it must be assured that the AGVs with a 
too low battery level do not take any transportation job, but 

they are forced to charge the batteries. The battery level 
threshold, under which the vehicles are forced to go to a 
charging station has been set to 5%. 

By using this rules, the ANN is able to compute a dy-
namic ranking, which depends from the current system 
state, for the possible decisions and can be used as a deci-
sion tool. 

In order to evaluate the goodness of a decision tool, in 
this case the ANN, the logistical simulation approach is 
used. It means that the case study under investigation is re-
produced in a discrete-event simulation environment. Sim-
ilar to [Pag17], the system performances, in this case the 

 

 

Figure 5: Output structure of the artificial neural network the 
case in Figure 3. 
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percentage of throughput denoted as %TH (see the formula 
below), applying the current decision tool are measured. 

%TH = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙𝑜𝑜𝑙𝑙𝑜𝑜

 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡  = Total number of material units that exited 
the system 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡,𝑙𝑙𝑜𝑜𝑙𝑙𝑡𝑡  = Total number of material units that 
could not be withdrawn from the material destinations 
(lost demand) 

4.2 TRAINING WITH GENETIC ALGORITHMS 

The output and thereby the performance of an ANN is 
highly dependent on the network topology (number of hid-
den layers and number of neurons in each layer), on the 
connection weights between the layer and on the activation 
potential and function of each neuron. 

To find a good solution the artificial neural networks 
are usually trained with a large set of training samples, a set 
of samples where the right output values (in this case the 
right decision) for a given set of inputs (state vector) is 
known. One possibility is applying a set of known heuristic 
rules. However their goodness is sometimes limited by 
their simplicity. On the contrary, the purpose of this paper 
is to investigate the use of genetic algorithms. 

The idea of genetic algorithms is to randomly generate 
a set of ANNs, test their goodness with a simulation tool 
and to proceed with the best subset of ANNs. The change-
able parameters, like number of hidden layers, number of 
neurons on each hidden layer, connection weights, activa-
tion potential and activation function, of the ANNs of this 
subset, called parents, will be randomly changed. Therefore 
the parameters are combined and mutated so that new 
ANNs (children) are created. Parents and children then 
form a new set that will be evaluated and so on. As a result, 
it is possible to move in the solution space by generating 
new solutions. These steps are repeated  until a target crite-
ria is met. 

The genetic algorithm for neural network-based deci-
sion tools proposed in this paper works as follows: 

1. Initialize the algorithm parameters: 

a. Define a maximum number of generated neural 
networks, i.e. solutions, (computational con-
straint). This parameter is denoted as 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 . 

b. Define an initial population size of the solu-
tions. This parameter is denoted as 𝑁𝑁𝑝𝑝. 

c. Define a number of generated combined solu-
tions, i.e. a number of solutions that are created 

by combining random preexisting solutions at 
each iteration. This parameter is denoted as 𝑁𝑁𝑐𝑐. 

d. Define a number of generated mutated solu-
tions, i.e. a number of solutions that are created 
by mutating random preexisting solutions at 
each iteration. This parameter is denoted as 𝑁𝑁𝑚𝑚. 

e. Define the topology of the neural networks 
(number of layers and number of neurons on 
each hidden layer). The topology is kept fixed 
for all the generated solutions. The number of 
input nodes and output neurons is based on the 
number of parameters of the input vector and to 
the number of possible decisions. 

2. Generate the initial population of 𝑁𝑁𝑝𝑝 solutions. 

3. Add 𝑁𝑁𝑐𝑐 combined solutions to the population. A 
combined solution is obtained by randomly 
choosing 2 parent solutions and by transferring 
some parameters of the neural network from one 
parent solution and some from the other. 

4. Add 𝑁𝑁𝑚𝑚 mutated solutions to the population. A 
mutated solution is obtained by randomly choos-
ing one parent solution. Some parameters of the 
neural network are transferred from the parent so-
lution, while others are randomly mutated. 

5. Evaluate the goodness of the “𝑁𝑁𝑝𝑝+𝑁𝑁𝑐𝑐+𝑁𝑁𝑚𝑚” indi-
viduals (neural networks) of the population as de-
cision tool for the job assignment in the event-
driven simulation environment. 

6. Remove the worst performing neural networks 
and keep only the best 𝑁𝑁𝑝𝑝 ones. 

7. If the number of total tested solutions (initial + 
combined + mutated) is lower than 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 , repeat 
from step 3, else stop algorithm. 

5 CASE STUDY 

In this section, a case study representing the material 
supply of a car manufacturing plant is introduced. It is then 
used to test and to compare the benefit of a neuro-genetic 
algorithm in comparison to the commonly used heuristic 
policy “FCFS-nearest vehicle first” on a concrete example.  

In the case study, the KARIS PRO vehicles [Col16] 
are responsible for the transportation of goods from the 
component supermarket to the assembly line. 

5.1 LAYOUT 

In the layout presented in Figure 6, it is possible to see 
6 stations in the supermarket area (marked with blue circles 
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numbered from 1 to 6), i.e. locations where the components 
from the supermarket are put on movable shelves (material 
and transportation unit) and get ready for the transportation, 
and 6 stations in the assembly line area (marked with blue 
circles numbered from 7 to 12), which are the locations 
where the movable shelves must be transported to. Moreo-
ver, 4 charging stations (CS) are available. 

The distances between the relevant points of the layout 
are also given in Figure 6. The shortest segments without 
any length indication are negligible. The AGVs can only 
move on the dashed green lines. 

 

Figure 6: Layout of the use case 

5.2 MODELLING 

Since the assembly line is a timed process with a pe-
riod of 27,7 minutes, one full movable shelf must be deliv-
ered at each station of the assembly line and one empty 
movable shelf must be returned at each station of the super-
market during each period. As a result, each station repre-
sents both a material source and a material destination. The 
interarrival time and interdeparture time are assumed to be 
normal distributed with expected value equal to the time 
period (27,7 minutes = 1662 seconds) and standard devia-
tion equal to 415 seconds. Moreover, the material sources 
and destinations are pairwise coupled in such a way that the 
movable shelves are only transported back and forth from 
station 1 to 7, from 2 to 8, from 3 to 9, from 4 to 10, from 
5 to 11 and from 6 to 12. 

The system is served by four vehicles with a speed of 
1 m/s and a loading/unloading time, i.e. an extra time re-
quired to autonomously load and unload the vehicles with 
the material units, of 30 seconds. The batteries are dis-
charged with a rate of 0,75 %

𝑚𝑚𝑖𝑖𝑛𝑛
 during the transportation 

and 0,19 %
𝑚𝑚𝑖𝑖𝑛𝑛

 in all other cases. 

For what concerns the genetic algorithm used to gen-
erate new neural networks, the following parameters have 
been assumed: 

Table 1: list of parameters for the neuro-genetic training used 
for the case study 

Parameter Value 

Nmax 500 

Np 5 

Nc 5 

Nm 5 

Mutation probability of the neural net-
work parameters (weight and thresholds) 

0,5 

Expected value of new mutated parame-
ters 

0 

Standard deviation of new mutated pa-
rameters 

1 

Distribution of new mutated parameters Gaussian 

Number of generated material units in the 
simulation to stop the evaluation 

500 

 

For what concerns the neural networks used as deci-
sion tool, a single hidden layer with 400 neurons has been 
considered. 

5.3 COMPARISONS WITH STATE-OF-THE-ART 
STRATEGIES 

In order to test the effectiveness of the neuro-genetic 
algorithm for the job assignment for AGVs, this algorithm 
has been tested against one of the most common assign-
ment policies. This policy will be called “First-Come-First- 
Served and Nearest-Vehicle-First”, shortly “FCFS and 
NVF”. Applying this policy, the material units that are 
waiting for a longer time in the material sources get a 
higher priority. The transportation job of the material units 
with the highest priorities will be assigned to the nearest 
idle vehicle. This combined policy aims to transport the 
material with a FIFO policy and to minimize the paths of 
the AGVs at the same time. For what concerns the energy 
management, vehicle will only go to a charging station 
when their battery level is 5% or less.  

As shown in Figure 7, the neural network-based pol-
icy, which has been trained with the neuro-genetic algo-
rithm, outperforms the “FCFS and nearest vehicle” policy 
with a percentage of successfully provided material units at 
the material destinations of 80,66%, which is higher than 
the 72,51% of the “FCFS and Nearest Vehicle First” pol-
icy. The error bars in Figure 7 represent the 95% confi-
dence interval of the data with 10 samples per policy and 
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shows that the results of the comparisons are statistically 
robust. 

 

Figure 7: Results of the comparison between the two investigated 
assignment policies (neural network-based after the genetic 
training and “First Come First Served and Nearest Vehicle 
First”). 

It is important to underline that 80,66% of throughput 
is too low for a real application. In reality, more vehicles 
would have been used and also backup transportation, for 
instance manually operated by workers, would have been 
available. As we tried to simulate a fully utilized system, 
we only used four vehicles and excluded backup transports. 

6 CONCLUSIONS 

In this work, a neural network-based genetic algo-
rithms have been introduced as a new methodology to de-
sign decision tools for the job assignment combined to the 
energy management for automated guided vehicles, shortly 
AGVs. In comparison to previous work in this direction 
(e.g. [Pag17]), the consideration of the energy management 
in the modelling provides the possibility to model the real-
ity even better. 

In particular, it has been shown how an artificial neural 
network can be used to link the set of states that a system 
can have and the set of state-dependent decisions that can 
be taken in operation. The training of the neural network is 
done with a genetic algorithm which generates new neu-
ronal networks by combining and mutating the parameters 
of the best selected neural networks at each iteration. For 

what concerns the evaluation of the best solutions, an 
event-driven simulation is used. 

The results have shown how this new methodology 
can quickly and effectively find a good solution, which out-
performs another commonly used management policy for 
AGV, i.e. the “First-Come-First-Served and Nearest-Vehi-
cle-First” policy, in the proposed case study representing 
the component supply to the assembly line in a car manu-
facturing plant.  

In order to get an even deeper understanding of the use 
of the neuro-genetic algorithm, further research steps are 
required. For example, it is necessary to test them on a large 
set of systems with different layouts and vehicles and to test 
them with different parameters used for the combination 
and mutation of the solutions. Another important topic to 
be further investigated is the influence of a different topol-
ogy of the artificial neural network, i.e. mainly number of 
hidden layers and number of neurons on each layer, on the 
training process. 
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