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utomated guided vehicles are designed to autono-

mously transport material in production and ware-

house environments. The loading/unloading process of 

the material on the vehicles occurs at dedicated stations, 

called material sources and destinations. Every time a ve-

hicle is idle, a new transportation job, i.e. the transporta-

tion of some goods from a material source to a material 

destination, can be assigned to one of the vehicles, which 

represents the limiting resource. The policies, which are 

used for the job assignment, are several. In this paper, a 

new policy based on neural networks which were trained 

by genetic algorithms is proposed and evaluated. The re-

sults show that this new policy outperforms a policy 

which is a combination of the so called “First Come First 

Served” and the “Nearest Vehicle First” policy. 

[Keywords: Automated guided vehicles, AGV, job assignment, 

neural networks, genetic algorithms] 

ahrerlose Transportsysteme werden häufig für den 

innerbetrieblichen Materialtransport im Produkti-

ons- und Lagerumfeld genutzt. Die Be- und Entladung 

mit Material findet an bestimmten Stationen, den Quellen 

und Senken, statt. Transportaufträge führen immer von 

einer Quelle zu einer Senke. Diese werden den Fahrzeu-

gen, die die begrenzte Ressource im System darstellen, zu-

geordnet. Dafür gibt es unterschiedliche Verfahren. In 

dieser Veröffentlichung wird ein neues Verfahren vorge-

stellt und evaluiert, das auf von genetischen Algorithmen 

trainierten neuronalen Netzen basiert. Die Versuche zei-

gen, dass das vorgestellte Verfahren bessere Ergebnisse 

liefert als ein Verfahren, das eine Kombination aus „First 

Come First Served“- und dem „Nearest Vehicle First“-

Verfahren darstellt. 

[Schlüsselwörter: Fahrerlose Transportsysteme, FTS, Auftrags-

vergabe, neuronale Netze, genetische Algorithmen] 

1 INTRODUCTION 

Due to shorter product life cycles and an increasing 

number of product variants, manufacturers are increasingly 

demanding greater flexibility. At the same time, a more 

cost-effective production is necessary due to rising cost 

pressure. While automation and flexibility were contradict-

ing terms in the past, they must now coexist. Through ad-

vanced developments in sensor and in safety technology, 

nowadays driverless transport systems can achieve both 

goals. Thus, a further spread of AGVs (or automated 

guided vehicles) can be expected in the future. With the aid 

of laser scanners, those driverless vehicles can navigate 

freely in facilities and warehouses, so that the required in-

frastructure is significantly reduced. As one example, the 

installation of induction loops is no longer necessary. This 

saves installation costs and makes a change of the layout 

even during operation possible. Furthermore, AGVs can 

work around the clock with a high level of availability and 

perform different type of tasks (as Figure 1 shows). For in-

stance, the vehicles of the project KARIS PRO [Col16] can 

transport either boxes, pallets or shelves. 

 

 

Figure 1: Representation of possible applications of the vehicles 

of the project KARIS PRO in a production environment 

As the importance of such vehicles in industry in-

creases, the problem of which transportation job should be 

assigned to which idle vehicle increases as well. A better 

job assignment policy can lead to a higher throughput, 

A 

F 
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lower operating costs and/or a lower number of required 

vehicles. 

This is why we have developed a new job assignment 

policy which is based on neural networks which have been 

trained by genetic algorithms.  

This research paper is organized as follows: In section 

2 the standard job assignment methods are discussed. In 

section 3 we will explain how the system has been mod-

elled. In section 4 we will describe how the neural network 

works and how it is trained. In section 5 we will carry out 

a case study. Finally, we will describe the conclusions in 

section 6.  

2 JOB ASSIGNMENT POLICIES 

Automated guided vehicles, shortly AGVs, are un-

manned transportation systems that are designed to auton-

omously transport goods within production and warehouse 

environments. Their loading and unloading process on the 

vehicles occurs at dedicated stations (see Figure 2), which 

will be denoted in this paper as material sources and mate-

rial destinations. In particular, a material source is a station 

where goods, denoted as material units, arrive from the up-

stream part of the production or logistic chain and need to 

be delivered by an AGV to a certain material destination to 

proceed in the logistical chain. On the contrary, a material 

destination is a station where the material units must be de-

livered. As a result, the goal of AGVs is to pick up the ma-

terial units from material sources and bring them to the cor-

respondent material destinations. For each transport, these 

two tasks are summarized in a job and before the execution 

of a job, it has to be assigned to a vehicle.  

 

Figure 2: Dedicated stations for the autonomous loading and un-

loading process of the material units (KARIS PRO concept) 

According to [Arn08], we can distinguish between two 

different kinds of job assignment to a vehicle: preplanning 

and dispatching.  

Preplanning means assigning a job as soon as it is gen-

erated. The advantage of this method is that you can plan 

already early with the implications of a job assignment like 

vehicle utilization. It is often used when you have to aggre-

gate several jobs to one tour. This is why it is usually used 

for LTL transports and not for AGVs.    

Dispatching means that a job gets only allocated when 

a vehicle gets idle. A job assignment takes place either if a 

job has been newly generated and there is at least one idle 

vehicle or if a vehicle terminates a job and there are further 

not-allocated jobs. Due to this latest possible decision the 

newest network conditions can be taken into account when 

making an assignment. Dispatching is usually used for 

AGVs as the network conditions are often changing and in 

contrast to LTL a job assignment is very extensive as one 

job occupies a whole vehicle. This is why we will focus on 

dispatching. 

According to [LeA06] dispatching rules for AGVs can 

be separated in two groups: Single-attribute and multi-at-

tribute dispatching rules. Single attribute dispatching rules 

base their assignment decision on only one attribute. They 

can be classified into three groups. Time-based dispatching 

rules try to minimize the throughput time of each job. For 

example, considering the First Come First Served Policy, 

the idle AGV chooses to transport the material unit, which 

is waiting the longest amount of time in the material source.  

Workload-based dispatching rules are for example 

used in production environments where you have several 

machines and workstations which have to be supplied with 

materials. The rules try to keep all sources receptive for 

new material and try to provide all workstations sufficient 

material. This is why this policy always chooses the source 

with least free stations and/or the destination with most free 

stations. 

Distance-based dispatching rules try to minimize the 

travelled distances of the vehicles. This is why, using this 

policy, an idle AGV always chooses to transport the mate-

rial unit, which is closest to itself. 

In some situations, these single attribute dispatching 

rules perform poorly, since they are limited to only one ob-

jective which can be effective in some situations but not in 

all of them. This is why often multi- attribute dispatching 

rules are used. They base their decisions on several attrib-

utes.  

In literature, many more job assignment policies can 

be found. Meta-heuristic strategies [Abd14] have been de-

veloped and applied in many scheduling problems, e.g. 

project scheduling or job shop scheduling. They have gen-

erally outperformed the heuristic ones in most of the cases 

[Leu15] by finding good solutions with less computational 

effort [Blu03]. One of the most promising group of meta-

heuristic algorithms are the neural network-based strate-

gies, like for example [Fen03], [Foo88] and [Par00]. They 
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are able to link the current system state to the decision to 

be taken with very complex relations, which are very diffi-

cult to be described by means of heuristic rules and which 

are identified by topology, the weights and thresholds of 

the neural network itself. As a result, they perform well in 

comparison to other heuristic and meta-heuristic methods, 

when the relations between the current system state and the 

best decision are complex and not intuitive. Moreover, 

those strategies can also be combined with other heuristics 

or meta-heuristics [Hai01]. 

In this paper, the combination between a neural net-

work-based policy and a genetic algorithm, in a similar way 

to the one applied to the project scheduling in [Aga11], has 

been proposed and tested to design a neural network-based 

decision tool for the job assignment of AGVs. 

3 SYSTEM MODELLING 

In this section, it is explained how the problem under 

investigation is modelled. The model is composed by four 

main modelling objects: material units, material sources, 

material destinations and vehicles. For instance, Figure 3 

represents an example of system composed by two material 

sources, two material destinations and two vehicles. 

The material units (in Figure 3 depicted as full squares 

and denoted by the letter “M”) represent some group of 

goods, which can be identified by a common container or 

carrier, for example a box, a transportable shelf or a pallet. 

They are supplied from the upstream part of the logistic 

chain to the material sources. Once they lay on the material 

source, the AGVs are in charge to bring them to the right 

material destination. Once they lay on one of the material 

destinations, they can be withdrawn to continue in the 

downstream part of the logistic chain. 

The material sources (in Figure 3 depicted as empty 

squares and denoted by the letters “MS” followed by a 

number) are dedicated stations where the material units 

constantly arrive with an arrival process described by a 

Gaussian distributed interarrival time. Those stations are 

also characterized by a maximum number of buffer places 

and by (x,y) coordinates in a 2D layout. When a new mate-

rial unit is about to arrive and all buffer places are busy (see 

MS2 in Figure 3), it is assumed that this material unit does 

not enter the considered system. As a result, each material 

unit that cannot be delivered to a material source contrib-

utes to lower the total system throughput, which is the ob-

jective function of the model. 

The material destinations (in Figure 3 depicted as 

empty squares and denoted by the letters “MD” followed 

by a number) are dedicated stations where the material 

units are constantly withdrawn with a withdrawal process 

described by a Gaussian distributed interdeparture time. As 

for the material sources, those stations are also character-

ized by a maximum number of buffer places and by (x,y) 

coordinates in a 2D layout. When a material unit is required 

to be withdrawn at a material destination and no material 

unit are available in it (see MD1 in Figure 3), it is assumed 

that that demand is lost. As a result, each material unit that 

cannot be withdrawn from a material destination also con-

tributes to lower the total system throughput. 

Finally, the vehicles are the AGVs to which the trans-

portation jobs, i.e. the transportation of a material unit from 

one material source to one material destination, can be as-

signed. Once they have completed a transportation job, 

they wait in an idle state at the material destination where 

they have delivered the last transported material unit. They 

represent the limiting resource, i.e. the higher their number, 

the higher the throughput, if the saturation has not been 

reached yet and if there are no blocking effects due to high 

traffic. They are characterized by the moving speed and a 

loading/unloading time, i.e. an additional time that is re-

quired to perform the loading/unloading process of the ma-

terial unit on the vehicle, e.g. fine positioning, load transfer, 

etc. 

 

Figure 3: Example of system with two material sources (four 

buffer places each), two material destinations (four buffer 

places each) and two vehicles.  

The dispatching of the material is defined by a dis-

patching matrix DM, whose element 𝐷𝑀𝑖,𝑗 identifies the 

probability that a material unit arriving at the material 

source i must be delivered at the material destination j. As 

a result, it has a number of rows equal to the number of 

material sources and a number of columns equal to the 

number of material destinations. In the case depicted in 

Figure 3, where each material source is coupled to a mate-

rial destination, the dispatching matrix is as follows:  

DM =  [
1 0
0 1

] 
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4 STRUCTURE OF THE NEURAL NETWORK-BASED 

GENETIC ALGORITHM 

In this section, it is explained how the neural network-

based genetic algorithm works. In particular, it is described 

how a neural network can be used as a decision tool for the 

job assignment and how it can be trained without training 

samples by using a genetic algorithm. 

4.1 NEURAL NETWORK AS DECISION TOOL 

An artificial neural network or ANN are computing 

systems inspired by biological neural networks. As stated 

in [DaS16], the computational components of an artificial 

neural network, called artificial neurons, are organised in 

layers and are able to gather numeric signals received in 

input (for example, 𝑥1, 𝑥2, …, 𝑥𝑛 in Figure 4), to elaborate 

them along the layers and to return an output value for each 

output neuron (for example, 𝑦1, 𝑦2, …, 𝑦𝑚 in Figure 4).  

 

Figure 4: Example of multi-layer artificial neural network 

[DaS16] 

In order to use the neural network as decision tool, it 

is possible to include and assign one output neuron to each 

possible decision and to use its output value y to rank the 

decisions. The output values are dependent from the input 

values, which represent the current state of the system de-

fined by a state vector (one input node for each element of 

the state vector). As a result, each time a decision can be 

taken (e.g. one or more AGVs are idle and one or more 

transportation jobs can be assigned), the system state is an-

alysed, the correspondent system vector is computed and 

given to the artificial neural network as input. The output 

values are returned and used the build the state-based rank-

ing of the decisions. The decisions are then analysed and, 

if possible (e.g. there are still idle AGVs or material units 

to be assigned), executed in the ranked order. 

In this work, the following parameters have been cho-

sen as input information: 

 Number of material units at each material source 

 Number of material units at each material destina-

tion 

 Number of idle vehicles at each material destina-

tion 

 Number of loaded vehicles heading to each mate-

rial destination 

As a result, if we call 𝑁𝑀𝑆 the number of material 

sources, 𝑁𝑀𝐷 the number of material destinations and 𝑁𝑉 

the number of vehicles, the number input nodes (elements 

of input state vector) is equal to 𝑁𝑀𝑆 + 3* 𝑁𝑀𝐷. For what 

concerns the number of output neurons, it is equal to the 

number of decisions. For this case, a typical decision is to 

assign the transportation of a material unit, whose destina-

tion is the material destination j (with j=1, …, 𝑁𝑀𝐷), laying 

in the material source i (with i=1, …, 𝑁𝑀𝑆) to the vehicle k 

(with k=1, …, 𝑁𝑉). As a result, the number of possible de-

cisions, is equal to 𝑁𝑉*𝑁𝑀𝑆*𝑁𝑀𝐷. 

Figure 5 and Figure 6 show how the neural network is 

structured in the case depicted in Figure 3 and assuming 

one additional hidden layer with 9 neurons. In particular, in 

Figure 5 represents the chosen state vector and the structure 

of the input layer, while Figure 6 focuses on the output 

layer and how on the relation between output neurons and 

decisions. In Figure 5, the following abbreviations are 

used: 

 “𝑛𝑀 in 𝑀𝑆𝑖” denotes the number of material units 

in the 𝑖𝑡ℎ material source. 

 “𝑛𝑀 in 𝑀𝐷𝑗” denotes the number of material units 

in the 𝑗𝑡ℎ material destination. 

 “𝑛𝐼𝑉 in 𝑀𝐷𝑗” denotes the number of idle vehicle 

waiting in the 𝑗𝑡ℎ material destination. 

 “𝑛𝑉 to 𝑀𝐷𝑗” denotes the number of loaded vehicle 

heading to the 𝑗𝑡ℎ material destination. 

 

Figure 5: Input structure of the artificial neural network the case 

in Figure 2. 

In Figure 6, the values of the output vector are output 

values of the last layer of neurons, while the correspondent 
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decisions are denoted with the abbreviation “𝑉𝑘 transports 

from 𝑀𝑆𝑖 to 𝑀𝐷𝑗”, which means that, if that decision is 

taken, a transportation job of a material unit, whose desti-

nation is the 𝑗𝑡ℎ material destination, laying in the 𝑖𝑡ℎ ma-

terial source is assigned to the 𝑘𝑡ℎ vehicle. 

 

Figure 6: Output structure of the artificial neural network the 

case in Figure 3. 

During operation, the position and state of the material 

units and of the vehicles changes and, as a result, the state 

vector changes as well. It means that for each different state 

of the system, the neural network may suggest a different 

decision, i.e. the decision with the highest output ranking 

value. If this decision cannot be taken, for instance if the 

correspondent vehicle is idle or there no material units to 

be transported from the correspondent material source to 

the correspondent material destination, the decision with 

the second highest correspondent output ranking value will 

be chosen and so on. As a result, the artificial neural net-

work is able to compute a dynamic ranking, which depends 

from the current system state, for the possible decisions and 

can be used as a decision tool. 

4.2 LOGISTICAL SIMULATION FOR THE EVALUATION 

In order to evaluate the goodness of a decision tool, in 

this case of a neural network, the logistical simulation ap-

proach is used. It means that the model described in section 

3 is reproduced in a discrete-event simulation environment 

(Figure 7 represents the simulation logics) and the system 

performances, in this case the percentage of throughput de-

noted as %TH (see the formula below), applying the cur-

rent decision tool are measured. 

%TH = 
𝑇𝐻𝑜𝑢𝑡

𝑇𝐻𝑜𝑢𝑡 + 𝑇𝐻𝑜𝑢𝑡,𝑙𝑜𝑠𝑡
 

𝑇𝐻𝑜𝑢𝑡  = Total number of material units that exited 
the system 

𝑇𝐻𝑜𝑢𝑡,𝑙𝑜𝑠𝑡  = Total number of material units that 
could not be withdrawn from the material destinations 
(lost demand) 

 

 

Figure 7: Logic of the event-driven simulation with embedded 

decision tool. 

4.3 TRAINING WITH GENETIC ALGORITHMS 

The relation between the different states and the sug-

gested decisions for each of them is highly dependent from 

the network topology (number of layers and number of 

neurons on each hidden layer), from the connection 

weights among the layers and from each activation poten-

tial and activation function of each neuron. As a conse-

quence, different neural networks have also different per-

formances and, since the goal is to find an as good as 

possible solution (or neural network) in a given amount of 

computational, an algorithm must be used to perform the 

search in the infinite set of possible solutions.  

The artificial neural networks are usually trained with 

a large set of training samples, i.e. a set of samples where 

it is known which are the right output values for a given set 

of inputs. That could be done by applying a set of known 

heuristic rules but their goodness is sometimes limited by 

their simplicity and intuitiveness. On the contrary, the pur-

pose of this paper is to investigate the use of genetic algo-

rithms. 

The idea of those algorithms is to generate new neural 

networks (solutions) and to test them at each iteration. The 

generation of new solutions is done by combining and mu-

tating some or all changeable parameters of a neural net-

work (number hidden layers, number of neurons on each 

hidden layer, connection weights, activation potential and 
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activation function), as they were genes of a DNA. As a 

result, it is possible to move in the solution space by gener-

ating new solutions. 

The genetic algorithm for neural network-based deci-

sion tools proposed in this paper works as follows: 

1. Initialize the algorithm parameters: 

a. Define a maximum number of generated neural 

networks, i.e. solutions, (computational con-

straint). This parameter is denoted as 𝑁𝑚𝑎𝑥 . 

b. Define an initial population size of the solu-

tions. This parameter is denoted as 𝑁𝑝. 

c. Define a number of generated combined solu-

tions, i.e. a number of solutions that are created 

by combining random preexisting solutions at 

each iteration. This parameter is denoted as 𝑁𝑐. 

d. Define a number of generated mutated solu-

tions, i.e. a number of solutions that are created 

by mutating random preexisting solutions at 

each iteration. This parameter is denoted as 𝑁𝑚. 

e. Define the topology of the neural networks 

(number of layers and number of neurons on 

each hidden layer). The topology is kept fixed 

for all the generated solutions. The number of 

input nodes and output neurons is based on the 

number of parameters of the input vector and to 

the number of possible decisions. 

2. Generate the initial population of 𝑁𝑝 solutions. 

3. Add 𝑁𝑐 combined solutions to the population. A 

combined solution is obtained by randomly 

choosing 2 parent solutions and by transferring 

some parameters of the neural network from one 

parent solution and some from the other. 

4. Add 𝑁𝑚 mutated solutions to the population. A 

mutated solution is obtained by randomly choos-

ing one parent solution. Some parameters of the 

neural network are transferred from the parent so-

lution, while others are randomly mutated. 

5. Evaluate the goodness of the “𝑁𝑝+𝑁𝑐+𝑁𝑚” indi-

viduals (neural networks) of the population as de-

cision tool for the job assignment in the event-

driven simulation environment. 

6. Remove the worst performing neural networks 

and kept only the best 𝑁𝑝 ones. 

7. If the number of total generated neural networks 

(initial + combined + mutated) is lower than 

𝑁𝑚𝑎𝑥 , repeat from step 3, else stop algorithm. 

5 CASE STUDY 

In this section, a case study is presented to test and 

compare the neuro-genetic algorithms on a concrete exam-

ple. 

5.1 CASE  INTRODUCTION 

In the considered system, five material sources and 

five material destinations are considered. We have 1:1 con-

nections so that each material source has its own material 

destination. The positions of the stations and the corre-

spondent material destinations for each material source are 

represented in Figure 8 by the layout and the dashed ar-

rows. It is considered an interarrival and interdeparture 

time equal to 120 seconds on average, a standard deviation 

of 30 for all stations and five buffer places for each of them. 

The system is served by four vehicles with a speed of 1 m/s 

and a loading/unloading time, i.e. an extra time required to 

autonomously load and unload the vehicles with the mate-

rial units. 

 

Figure 8: Representation of the system considered in the case 

study 

For what concerns the genetic algorithm used to gen-

erate new neural networks, the following parameters have 

been assumed: 
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Table 1: list of parameter used for the case study 

Parameter Value 

Nmax 1000 

Np 5 

Nc 5 

Nm 5 

Mutation probability of the neural net-

work parameters (weight and thresholds) 

0,5 

Expected value of new mutated parame-

ters 

0 

Standard deviation of new mutated pa-

rameters 

1 

Distribution of new mutated parameters Gaussian 

Number of generated material units in the 

simulation to stop the evaluation 

10000 

 

For what concerns the neural networks used as deci-

sion tool, a single hidden layer with 400 neurons has been 

considered. 

5.2 PERFORMANCE EVALUATION 

With the above listed parameters, five possible solu-

tions (neural networks) are generated as initial population 

and at each generation five combined solutions and five 

mutated solutions are added to the set of individuals. At the 

end of each generation, the 15 solutions are evaluated and 

the five best ones are kept for the next generation, while the 

other ten are deleted from the solution set. 

With ten new generated solutions at each generation 

and a total number of generated solutions equal to 1000, 

100 generations are obtained. Figure 9 shows the perfor-

mance (throughput percentage) of the best solution of the 

solution set at each generation. By considering the mean 

values (red line) of the throughput percentage, it is ob-

served that better and better solutions are found generation 

after generation. This phenomenon is particularly strong in 

the first generations because it is likely that the absolute 

best solutions have not been found yet. The confidence in-

tervals, which have been drawn with alpha equal to 5%, 

show that the single improvements generation after gener-

ation are not always statistically significant (the confidence 

intervals are overlapped). However, the absolute improve-

ment throughout the whole computation is strongly signif-

icant. 

 

Figure 9: Performance of the best solution at each generation 

5.3 COMPARISONS WITH STATE-OF-THE-ART 

STRATEGIES 

In order to test the effectiveness of the neuro-genetic 

algorithm for the job assignment for AGVs, this algorithm 

has been tested against one of the most common assign-

ment policies already used in real applications. This policy 

will be called “First Come First Served and Nearest Vehi-

cle First”, shortly “FCFS and NVF”. Applying this policy, 

the material units that are waiting for a longer time in the 

material sources get a higher priority. The transportation 

job of the material units with the highest priorities will be 

assigned to the nearest idle vehicle. This combined policy 

aims to transport the material with a FIFO policy and to 

minimize the paths of the AGVs at the same time. 

As shown in Figure 10, the neural network-based pol-

icy, which has been trained with the neuro-genetic algo-

rithm, outperforms the “FCFS and nearest vehicle” policy 

with a percentage of successfully provided material units at 

the material destinations of 94,35%, which is higher than 

the 90,13% of the “FCFS and Nearest Vehicle First First” 

policy. The error bars in Figure 10 represent the 95% con-

fidence interval of the data with 10 samples per policy and 

shows that the results of the comparisons are statistically 

robust. 
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Figure 10: Results of the comparison between the two investi-

gated assignment policies (neural network-based after the 

genetic training and “First Come First Served and Nearest 

Vehicle First”). 

6 CONCLUSIONS 

In this work, the neural network-based genetic algo-

rithms have been introduced as a new methodology to de-

sign decision tools for the job assignment to automated 

guided vehicles, shortly AGVs. In particular, it has been 

shown how an artificial neural network can be used to link 

the set of states that a system can have and the set of state-

dependent decisions that can be taken in operation. The 

training of neural network is done with a genetic algorithm, 

which generates new possible solutions by combining and 

mutating the parameters of the best selected solutions at 

each iteration. For what concerns the evaluation of the best 

solutions, an event-driven simulation is used. 

The results have shown how this new methodology 

can quickly and effectively find a good solution, which out-

performs one of the common job assignment policy, i.e. the 

“First Come First Served and nearest vehicle” policy, in the 

presented case study.  

In order to get an even deeper understanding of the use 

of the neuro-genetic algorithm, further research steps are 

required. For example, it is necessary to test them on a large 

set of systems with different layouts and vehicles and to test 

them with different parameters used for the combination 

and mutation of the solutions. Another important topic to 

be further investigated is the influence of a different topol-

ogy of the artificial neural network, i.e. mainly number of 

hidden layers and number of neurons on each layer, on the 

training process. 
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