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n many production and logistics systems the lead-
time distribution of the transported products and 

goods plays a major role for what concerns the system 
performances. In particular, when the sojourn time in a 
part of the supply chain exceeds the target range, some 
quality and rework costs may arise, for example in case 
of perishable goods. This paper presents an analytical 
model to exactly determine the lead-time distribution in 
closed loop systems and to compute the correspondent 
costs by means of discrete-time Markov chains. 

[Keywords: Discrete-Time, Markov Chain, Kanban, Lean Pro-
duction, Perishable Goods, Lead-Time, Closed-Loop] 

n vielen Produktions- und Logistiksystemen spielt die 
Durchlaufzeitverteilung der transportierten Waren 

und Produkte eine wichtige Rolle hinsichtlich der Sys-
temleistung. Insbesondere, wenn die Verweilzeit in ei-
nem Teil der Supply Chain eine bestimmte Grenze über-
schreitet, können Qualitäts- bzw. Nacharbeitskosten 
entstehen, z.B. im Falle von umgebungsempfindlichen 
Waren. Dieses Paper stellt ein analytisches Modell vor, 
das mittels zeitdiskreter Markov-Ketten die Durchlauf-
zeitverteilung in geschlossenen Netzwerken exakt be-
stimmt und die dazugehörigen Kosten berechnet. 

[Schlüsselwörter: Zeitdiskrete Markov Kette, Kanban, Lean 
Produktion, Umgebungsempfindliche Güter, Durchlaufzeit, Ge-
schlossenes Netzwerk] 

1 INTRODUCTION  

In many different logistics and production contexts, 
the lead-time, i.e. the period of time that elapses between 
two arbitrary checkpoints in the material flow, plays a 
very important role. That happens not only due to invento-
ry costs, which increase as the mean material lead-time 
increases, but also due to quality and rework costs, which 
may arise when perishable goods stays in a certain envi-

ronment for a too short or too long period of time. In real 
logistics and production environments, there are plenty of 
examples. In some cases, the elapsed time between the 
production and sale of the products is relevant, for in-
stance, when the products have a short date of expiry 
(e.g., food industry, chemistry, …). In other cases, the 
lead-time between two intermediate production stages of 
the production systems may be relevant, if particular pre-
scribed environmental conditions (e.g., temperature, con-
tamination, …) must be ensured for a certain time inter-
val. Examples are thermal treatments for metal and food 
or drug and food conservation in refrigerated containers. 
Lastly, in the field of transport logistics, it is important to 
deliver the sold products on the agreed time interval. For 
each day of delay, the company incurs increasing quality 
costs (e.g., online shops …). 

 
Figure 1. Example of lead-time problematic 

In order to keep the quality and rework costs caused 
by the lead-time as low as possible without strongly af-
fecting the other system performance measures, especially 
the throughput, lean production strategies such as Kanban 
systems are used. One of their major goals is to avoid 
over-production, which could overfill the warehouses and, 
as a result, increase the mean lead-time [AlA10]. Moreo-
ver, lean production techniques make the demand pull the 
production, i.e. to produce a certain product only when a 
customer takes it from the supermarket. 

2 MOTIVATION 

In all those examples, the goal is to reduce the per-
centage of material that expires the target lead-time range 
between two checkpoints in material flow, either within 
one company or in the supply chain. For that reason, the 
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need for tools that are able to estimate the lead-time dis-
tribution arises. By means of them, the system perfor-
mance can be computed and the correspondent costs esti-
mated. Finally, different possible lean strategies or even 
different system configurations for the same strategy can 
be compared and improvement measures can be quantita-
tively identified and quantitatively supported. 

For those reasons, the scientific community has tack-
led the problem of computing the lead-time distribution in 
lean systems more and more. In particularly, a large num-
ber of contributions analyzed the problem by means of 
simulation tools ([Gur11], [Abd07]). Nevertheless, simu-
lation models return an inexact solution and that implies 
that extra statistical tools are required to deal with confi-
dence intervals. Moreover, they perform badly when the 
optimization problem has a continuous solution space, 
since most of the algorithms are based on the computation 
of objective function gradients to determine the improve-
ment direction until the optimum for the objective func-
tion has been found. The second major problem of simula-
tion models is that, if the user is interested in a steady-
state solution for the problem, long simulation times are 
required to get a pseudo-steady-state solution that still 
contains variability. 

As a result, many scientific contributions have fo-
cused on analytical models, which can return an exact and 
quick solution. Most of the effort in that direction has 
been dedicated to estimate the first moment of perfor-
mance measures (e.g., average throughput, average lead-
time, average inventory level …). However, models that 
are able to compute the second moment of performance 
measures, such as performance variability and distribu-
tion, have been only coarsely investigated. For example, 
[Ass14] presents a general methodology to analyze the 
variability of the output of unreliable single machines and 
small-scale multi-stage production systems modelled as 
General Markovian structure. Moreover, in [Dol15] a 
production control policy for unreliable manufacturing 
systems that aims at maximizing the throughput of parts 
that respect a given lead-time constraint is proposed. 

Few papers have applied those concepts to the pro-
duction of perishable goods. In particular, [Col14] intro-
duces an analytical method to model the dynamics of 
lead-time dependent quality deterioration of goods in a 
buffered two-machine line with general Markovian ma-
chines. In [Col15] a similar concept is extended for the 
calculation of lead-time distribution under a large set of 
different system architectures, including serial lines, 
closed-loop systems and assembly lines. Although both 
contribution presents method which can return a quick 
and exact solution, they model a Markovian behavior of 
the machines which implies strong model assumption for 
what concerns the production rate distribution. 

Some other research works focused on modelling ar-
bitrary service distributions for the servers with exact ana-
lytical models. For instance, [Epp16] introduced a meth-
odology to compute the lead-time distribution in closed 
queueing networks with an arbitrary topology and arbi-
trary distribution of the server service times. However, the 
possibility to model different topologies and service dis-
tribution makes the computation effort strongly increase 
and, for that reason, some decomposition methodologies 
have been introduced, like for instance in [Epp15], in or-
der to reduce it. Although this approach does not require 
dealing with confidence intervals or other statistical fea-
tures and, as a result, it is still suitable for optimization 
problems, an approximation in the computation is intro-
duced. 

This paper presents an exact analytical model to 
compute the lead-time distribution in a closed-loop net-
work composed by an arbitrary number of servers with 
arbitrary service time distributions. The algorithm is based 
on discrete-time Markov Chains as in [Epp16] but, unlike 
it, no branches and merges are considered in the topology. 
As a result, the algorithms is simplified and the computa-
tion times are drastically lowered. Moreover, it is possible 
to compute the lead-time not only through the entire sys-
tem but also through a smaller part of the system. 

 
Figure 2. Example of problem solvable with the model pre-

sented in this paper 

3 MODEL 

3.1 CHARACTERISTICS 

The system under investigation is closed-loop queue-
ing system in discrete-time domain. It consists of V sta-
tions with one server and one waiting room each, as well 
as 𝐾𝐾� customers that circulate in the system. The routing of 
the customers to the subsequent station is defined by the 
station numbering, i.e. that the customers that have just 
been processed in Station i go to station i+1 and from the 
last station V they return back to station 1. The system is 
observed at equally spaced time periods with a length of 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖. It is assumed that the beginning and the end of ser-
vice as well as the routing to the subsequent station take 
place immediately prior to the periods. The customers that 
cannot be processed immediately stay in the waiting 
room, which has infinite queueing capacities, and are 
served based on a first come first serve discipline. The 
service time at station i is assumed to be independent from 
the system state and defined by the random variable 𝐵𝐵𝑖𝑖, 
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where 𝑏𝑏𝑖𝑖,𝑗𝑗 denotes the probability that 𝐵𝐵𝑖𝑖 assumes value j 
times 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 (see Figure 3) with j ∈ {1,…,𝐽𝐽𝑖𝑖}. 

 
Figure 3. Single station with discrete service time distribu-

tion 

The model is able to exactly compute all the main 
first-degree performance measures at each station (i.e. av-
erage throughput, queue length and so on) along with the 
lead-time distribution between two checkpoints in the 
network under steady-state conditions. The entry check-
point lays just before the entry in the waiting room of one 
station, while the exit checkpoint lays just after the server 
of another station. 

 
Figure 4. System example with entry and exit checkpoints 

3.2 COMPUTATION 

The system performance measures are computed by 
means of a discrete-time Markov Chain that models all 
the system states and the possible state transitions that can 
occur at each time step. In order to define a system state, a 
vector denoted as z with 2∙V elements is required. 

z = ( 𝑟𝑟1 ,  𝑟𝑟2 , … , 𝑟𝑟𝑉𝑉 , 𝑘𝑘1 , 𝑘𝑘2 , … , 𝑘𝑘𝑉𝑉 ) 
with 𝑟𝑟𝑖𝑖 ∈ {0,1,…, 𝐽𝐽𝑖𝑖}, 𝑘𝑘𝑖𝑖 ∈ {0,1,…,𝐾𝐾�}, i ∈ {1,…,V} 

For instance, let us consider the system in figure 5. 
That system will be considered as a reference system for 
the algorithm explanation. That system is in a state that is 
defined by z = ( 2 1 1 1 ). The black boxes represent the 
customers (last two numbers of the state vector) while the 
white numbers on the boxes represent the remaining ser-
vice times (first two numbers of the state vector). 

 
Figure 5. Reference system configuration for the algorithm 

explanation 

3.2.1 STEP 1: STEADY STATE PROBABILITIES 

The first step is to compute the steady-state probabili-
ties of all system states. The computation is performed 
with the traditional discrete-time Markov Chain ap-
proaches as soon as the state transition matrix is known. 

In order to compute the transition matrix, a simplified 
methodology in comparison to the one presented in 
[Epp16] is used. The simplification is because no branch-
es and merges are considered in the model. 

The beginning of each new time period reduces the 
residual time of each customer by 1 and the end of a ser-
vice (𝑟𝑟𝑖𝑖 from 1 to 0) triggers the transfer of the customer 
to the next station. Since the routing of the customers is 
deterministic, there is only one possible state transition at 
each time step, as long as no new service start. If a new 
service starts at station i, the residual time of the new cus-
tomer in service is given by the random variable 𝐵𝐵𝑖𝑖. Since 
𝐵𝐵𝑖𝑖 can take different values, more than one state transition 
will be possible. The combination of all possible new ser-
vice times determines the transition probabilities. 

By applying this methodology, the following proba-
bilities are obtained for the system in figure 5: 

Table 1. State set and steady-state probabilities for system in 
figure 5 

System state Probability 

(2 1 1 1) 9.6 % 

(1 1 1 1) 28.7 % 

(1 2 1 1) 14.9 % 

(2 2 1 1) 22.3 % 

(1 0 2 0) 9.6 % 

(0 1 0 2) 14.9 % 

 

In general, N states are found, denoted as 𝑧𝑧𝑖𝑖 and in-
cluded in the set Z. 



DOI: 10.2195/lj_Proc_pagani_en_201610_01  
URN: urn:nbn:de:0009-14-44594 

  
© 2016 Logistics Journal: Proceedings – ISSN 2192-9084          Page 4 
Article is protected by German copyright law 

3.2.2 STEP 2: COMPUTATION OF LEAD-TIME 
CONTRIBUTION OF THE SINGLE STATES 

Similarly to [Epp16], the total lead-time distribution, 
denoted as S, is computed as the weighted summation of 
the contributions 𝑆𝑆𝑖𝑖 of each system state. Even in this 
case, the methodology has been modified and simplified 
to be suitable for closed-loop networks without branches 
and merges. The computation starts when a customer 
passes through the entry checkpoint and stops when it 
passes through the exit checkpoint. Since no branches and 
merges are present in the system, the customers cannot 
overtake each other and this system property is used to 
simplify and speed up the computation. 

The computation steps are as follows: 

1. For each state 𝑧𝑧𝑖𝑖 where a customer goes through the 
entry checkpoint in the next time interval, the set of 
the following states 𝑍𝑍𝑖𝑖0 (referring to the period t = 0 
of the cycle time computation) is computed along 
with their probability 𝑝𝑝𝑖𝑖,𝑚𝑚

0  (with m ∈ {1, … , 𝑀𝑀𝑖𝑖
0} 

and 𝑀𝑀𝑖𝑖
0 the state number contained in 𝑍𝑍𝑖𝑖0). 

2. From the set 𝑍𝑍𝑖𝑖0, the generic subsequent set 𝑍𝑍𝑖𝑖𝑡𝑡  is 
generated by taking all the states of the set 𝑍𝑍𝑖𝑖𝑡𝑡−1 and 
by including the correspondent subsequent states that 
are generated by it. Each time one or more states are 
generated from one state of the previous set, the 
probability must be also split correspondently. Since 
the customers cannot overtake each other, it does not 
matter which customers will enter the entry check-
point after the lead-time computation has already be-
gan. As a result, at the beginning of the lead-time 
computation, it is possible to dispose and not to con-
sider the customers that are outside the limits of the 
considered subsystem and the ones that exit it in the 
following time intervals. With this computation algo-
rithm, no extra indexes to track the just entered cus-
tomer are required as in [Epp16], and the computa-
tion will stop when the number of customers in the 
system becomes zero similarly to [Col14]. 

3. Whenever the customer number of the subsequent 
state 𝑧𝑧𝑖𝑖,𝑚𝑚

𝑡𝑡  of the set 𝑍𝑍𝑖𝑖𝑡𝑡  becomes zero, the corre-
spondent probability 𝑝𝑝𝑖𝑖,𝑚𝑚

𝑡𝑡  is assigned to the 𝑡𝑡𝑡𝑡ℎ posi-
tion of the lead-time contribution 𝑆𝑆𝑖𝑖. 

Figure 6 provides an example for the computation of the 
lead-time contribution of the customer which is arriving at 
the first station out of the first state  for the system depict-
ed in figure 5. 

 
Figure 6. Example of computation for the lead-time contri-

bution 

3.2.3 STEP 3: COMPUTATION OF THE TOTAL LEAD-
TIME DISTRIBUTION 

Once all the lead-time distribution contributions 𝑆𝑆𝑖𝑖 
have been computed, they must be summed and weighted 
by the correspondent steady-state probability with the fol-
lowing formula: 

S = ∑ 𝑝𝑝𝑛𝑛 ∙ 𝑆𝑆𝑛𝑛𝑁𝑁
𝑛𝑛=1
∑ 𝑝𝑝𝑛𝑛𝑁𝑁
𝑛𝑛=1

 

In this case, the following lead-time distribution is 
obtained: 

S = �
0

0.02952
0.29184
0.56776
0.11088

�  

 
Figure 7. Lead-time distribution for the system depicted in 

figure 5 

Figure 7 presents graphically the results of the lead-
time computation. Those results have been also verified 
by comparing them with the ones obtained with the meth-
od presented in [Epp16]. 
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4 USE CASE 

4.1 PROBLEM DESCRIPTION 

In this chapter a typical industrial problem from the 
automotive industry, where the model can be effectively 
used, is presented. 

Particularly, the investigated system consists of a 
production plant where several products made of cast iron 
are produced with a 3-shift daily schedule. The raw parts 
are received from the foundry and are worked by means 
of lathes (station 1: turning). After the chip removal, they 
are partially painted and completely immersed in an oil 
bath (station 2: painting) to provide extra rusting protec-
tion until they are sold to the final customer. Finally, they 
are stocked in the final supermarket (station 3: supermar-
ket). In all stations, a FIFO policy is applied and every 
station has some intermediate buffer areas. 

 
Figure 8. Representation of the Kanban cycle in the use 

case 

The disks circulate in the system in batches which are 
physically represented by standardized containers and it is 
assumed that each of them contains 50 parts on average. 
The WIP is controlled by means of virtual Kanbans that 
are assigned to each container. As soon as a customer 
withdraws a container from the supermarket, the Kanban 
is virtually detached from it and a new batch of products 
is allowed to enter the system. Figure 8 represents a 
schematic representation of the Kanban loop. 

The relevant system performance measures in this 
case are: 

• the stock-out costs, which the company incurs 
when a final product is required but not availa-
ble in the final supermarket 

• the WIP costs, which are proportional to the av-
erage amount of material circulating in the sys-
tem 

• the quality costs, which occur when the target 
lead-time is exceeded. 

In the following paragraphs, the total relevant costs, 
i.e. the summation of all three costs, will be evaluated by 
means of an objective function and the optimal number of 
Kanbans will be analytically computed. 

4.2 MODELLING 

Since the intermediate buffers and the supermarket 
are big enough to assume an infinite capacity, the three 

above-mentioned stations can be modelled like the station 
depicted in figure 3, and connected to each other as shown 
in figure 8. Since the rusting process of the turned surfac-
es starts after the turning station, the entry checkpoint will 
be placed immediately after that station. Due to the fact 
that the supermarket is the last station in the company that 
the products visit, the exit checkpoint is located after it. 

Moreover, since the model just considers the Kanban 
flow, it is assumed that the first station is never in starva-
tion for raw parts. 

Since the turning and painting machines are dedicat-
ed for each single product, it is possible to consider the 
Kanban loop of each product separately. 

The Kanban number for the considered product is 15 
in the default configuration and the service time distribu-
tions are given as in figure 9. 

 
Figure 9. Modelling of the uses case 

In particular, the servers of station 1 and 2 model the 
lathe and the painting plan which can be considered as 
two clocked stations that process one container every 2 
time intervals (corresponding to 20 minutes), if no prob-
lem occurs and 3 time intervals otherwise. The server of 
station 3 represents a turbulent demand with a generic dis-
tribution. Finally, each time the demand is not satisfied 
(WIP at station 3 equal to 0), the demand is considered as 
lost. The company sets internally a target lead-time of 1 
day (corresponding to 72 time units), which assures that 
the products arrive without rust at the customer company. 

4.3 PERFORMANCE EVALUATION 

Since the first goal is to evaluate the overall costs, an 
objective function is defined as follows: 

OF = 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊 + 𝐶𝐶𝑞𝑞𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑞𝑞 = 

=𝑃𝑃𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑠𝑠−𝑙𝑙𝑞𝑞𝑡𝑡 ∙ 𝐷𝐷 ∙ 𝑁𝑁𝑃𝑃+WIP ∙ 𝐶𝐶𝑞𝑞 ∙ 𝐶𝐶𝑖𝑖+𝑃𝑃(𝐿𝐿𝐿𝐿>𝐿𝐿𝐿𝐿� ) ∙ 𝑇𝑇𝑇𝑇 ∙ 𝑝𝑝𝑞𝑞 ∙ 𝐶𝐶𝑓𝑓 

𝑃𝑃𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑠𝑠−𝑙𝑙𝑞𝑞𝑡𝑡 = probability that no customers are in station 3. 
It corresponds to the percentage of the lost demand. 

𝐵𝐵3��� = average service time of station 3 [2.3 𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖

] 

D = 1
𝐵𝐵3���� 

 = average demand rate [ 1
2.3

 𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙
𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙

] 

𝑁𝑁𝑃𝑃 = net profit [500 €
𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖

] 
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WIP = work in progress in the system, which also corre-
sponds to the total number of Kanbans [containers] 

𝐶𝐶𝑞𝑞 = unitary cost [2000 €
𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖

] 

𝐶𝐶𝑖𝑖 = cost of capital [0.0000044 
€
𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙�

€
]. It is com-

puted by considering an annual cost of capital of 8% and 
time intervals of a length equal to 20 minutes, as given in 
the previous paragraph. 

𝑃𝑃(𝐿𝐿𝐿𝐿>𝐿𝐿𝐿𝐿� ) = probability that the lead-time exceeds the tar-
get lead-time 

𝐿𝐿𝑇𝑇�  = target lead time [72 time intervals (1 day)] 

𝑇𝑇𝑇𝑇 = system throughput [ 𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖
𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙

] 

𝑝𝑝𝑞𝑞 = unitary price [2500 €
𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖

] 

𝐶𝐶𝑓𝑓 = complain factor [200%]. Percentage of the unitary 
price that the company incurs in case of quality problems. 

With the given parameters, following results are ob-
tained: 

Table 2. Performance measures of the use case with the de-
fault number of Kanbans 

Stock-out probability (Lost 
sales) 

0.2% 

WIP 15 containers 

Probability of exceeding the 
target LT 

0% 

TH 0.434 𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙
𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙

 

Lost sales costs 7770 €
𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖

 

WIP costs 2376 €
𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖

 

Quality costs 0 €
𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖

 

Total costs 10146  €
𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖

 

 

The results suggest that the company incurs much 
more costs due to the lost sales than for WIP and quality 
costs. As a result, a slightly higher number of Kanban 
could probably help the company to lower the total costs 
but for a rigorous and quantitative estimation, further 
computations are required. 

4.4 OPTIMIZATION 

If the number of Kanban in the system is increased, it 
influences the parameter of the objective function as fol-
lows: 

• 𝑃𝑃𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑠𝑠−𝑙𝑙𝑞𝑞𝑡𝑡 decreases because more finished 
products will be preventively stocked on the 
shelves of the supermarket (see figure 10). 

• WIP will proportionally increase (see figure 11). 

• 𝑃𝑃(𝐿𝐿𝐿𝐿>𝐿𝐿𝐿𝐿� ) increases because the average queue 
length at each station increases (see figure 12). 

• 𝑇𝑇𝑇𝑇 increases because the utilization of the serv-
ers increases (see figure 13). 

The following graphs can be plotted for a number of 
Kanban between 6 and 30: 

 
Figure 10. Stock-out probability as a function of the Kanban 

number 

 
Figure 11. WIP as a function of the Kanban number 

 
Figure 12. Probability of exceeding the target LT as function 

of the Kanban number 
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Figure 13. Throughput as a function of the Kanban number 

If the performance parameters are converted in costs, 
the trends plotted in figure 14 can be observed. Particular-
ly, the WIP costs increase slowly and proportionally the 
number of Kanban, since they are directly linked. On the 
other hand, the lost sales costs decrease. Lastly, the quali-
ty costs are equal to zero, if the Kanban number is smaller 
than 19, since it is impossible to exceed the target lead-
time. On the contrary, if it is greater or equal to 19, quality 
costs arise and increase quickly. 

 
Figure 14. Yearly costs as function of the Kanban number 

The optimum is found for a Kanban number equal to 
22, where the best compromise between quality, lost sales 
and WIP costs is achieved. The yearly cost saving per 
product that the company would achieve by just changing 
the Kanban number for the considered product family is 
5200 €

𝑞𝑞𝑙𝑙𝑙𝑙𝑖𝑖
 that, extended to all other products could bring 

a significant overall cost saving. 

As shown in figure 15, the computation time (proces-
sor Intel Core i7-5600U CPU 2.60GHz) also rapidly in-
creases by increasing the Kanban number. The reason is 
that the number of possible system state increases expo-
nentially with the number of customers in the system and 
that, since the queue lengths increase, the mean number of 
time intervals to empty the system during the computation 
of the lead-time distribution contribution increases. 

 
Figure 15. Computation time as a function of the Kanban 

number 

5 CONCLUSIONS 

The work has presented an exact method to deter-
mine the lead-time distribution in any closed-loop queue-
ing system with general discrete service times. In compar-
ison to the already existing works in the literature, the 
model is able to handle any discrete service time distribu-
tion at each station. Furthermore, we are able to choose a 
smaller subset of stations, where the lead-time will be 
computed. The algorithm returns an exact solution, which 
is particularly helpful in optimization problems and in 
problems, where the distribution must be determined ac-
curately, e.g., percentage of parts exceeding the target 
lead-time. 

Moreover, the application to the real case has shown 
how, in a real industrial context, the model can be used to 
quantitatively support decisions, e.g., the choice of the 
proper Kanban number for each product. Particularly, it 
can be used to show how the trade-off between lost sales, 
work in progress and quality costs influence the optimal 
Kanban number. 
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