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runcated distributions of the exponential family 
have great influence in the simulation models. This 

paper discusses the truncated Weibull distribution 
specifically. The truncation of the distribution is 
achieved by the Maximum Likelihood Estimation 
method or combined with the expectation and variance 
expressions. After the fitting of distribution, the 
goodness-of-fit tests (the Chi-Square test and the 
Kolmogorov-Smirnov test) are executed to rule out the 
rejected hypotheses. Finally the distributions are 
integrated in various simulation models, e. g. shipment 
consolidation model, to compare the influence of 
truncated and original versions of Weibull distribution 
on the model.  

[Keywords: Truncated Weibull distribution, Supply Chain Ma-
nagement, shipment consolidation policy] 

ekürzte Verteilungen der exponentialen Familie 
haben großen Einfluss auf die Simulationsmodelle. 

Dieser Beitrag konzentriert sich auf die gekürzte 
Weibull-Verteilung. Die Verkürzung der Verteilung 
wird durch die Maximum-Likelihood-Estimation-Me-
thode oder eine Kombination mit Erwartungswert und 
Varianz erreicht. Danach werden die Anpassungstests 
(z. B. Chi-Quadrat-Test und Kolmogorov-Smirnov-Test) 
durchgeführt,   um die falschen Hypothesen zu beseiti-
gen. Weiterhin wird die gekürzte Weibull-Verteilung in 
einem Lieferungs-Konsolidation-Modell integriert, um 
den Einfluss von gekürzten und originalen Verteilungen 
zu vergleichen. 

[Schlüsselwörter: Gekürzte Weibull-Verteilung, Supply Chain 
Management, Lieferungs-Konsolidierungs-Strategie] 

 

1 INTRODUCTION AND OVERVIEW 

Simulation and modeling is a popular topic in many 
industrial fields. The source component of the simulation 
model comes from the distribution model which is 
induced from the empirical data. The majority of the 
important distributions used in the simulation come from 
the exponential family. Three members of the exponential 
family are the normal distribution, gamma distribution 
and Weibull distribution. These distributions are used in 
many simulation models to serve as the reflection of the 
real world. However, the truncated versions of these 
distributions are utilized less in practice. This paper 
discusses the truncation of Weibull distribution in 
simulation models. 

First of all, the importance of the truncation should be 
discussed for the necessity of this research. There are 
multiple reasons for the truncation of distributions, 
especially in the simulation of the supply chains or the 
production systems. One most commonly seen reason is 
to discard the unreliable data from the sample pool. 
Douglas J. Depriest discussed the singly truncated normal 
distribution in the analysis of satellite data [DD83]. The 
infrared sensor from the satellite could have extremely 
distorted data reading because of the cloud in the view. So 
the sample data that are extracted from the data pool are 
contaminated by these falsely read data. In order to get a 
more accurate simulation input, a truncation point was set 
to rule out all the unreliable data. The truncation served 
this purpose and also maintained the properties of a 
distribution. Another reason to apply the truncation of 
distributions in the simulation model is that the truncation 
would reflect the real world in a better way than the 
original distributions. An example for this scenario would 
be a simulation of the breakdown times in a production 
system. A simple two-server system, which is composed 
by a source, two servers, and a sink, is simulated using a 
system with all the empirical data for each component 
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provided. The servers are working under about 90% 
workload utility and they suffer from random breakdowns. 
For a simulation of the breakdowns, two sets of data are 
required, namely, the duration of the breakdowns and the 
interval between the breakdowns. The duration of the 
breakdowns is one important aspect of the model and 
could have great influence on the outcome of the 
simulation. For example, the empirical data collected 
show that the duration of breakdowns obeys a Weibull 
distribution, which would then be implemented to the 
simulation model as the duration of the breakdowns. Like 
any distributions, the data that are generated from this 
distribution would cover the whole possible range that 
distribution is defined on. This would cause some extreme 
values as the breakdown duration to be generated, which 
can have a great influence on the simulation result.  

In the real industrial scenario, the breakdown of the 
machines is a devastating factor of the production process. 
Therefore, any extreme values that are generated for the 
duration of the breakdown should be considered as 
unreliable data because such long breakdown times would 
not happen in real industrial scenes. Having these ideas in 
mind, multiple approaches are made to avoid these 
extreme values in the simulation models. One of the most 
commonly used methods is to simply discard all the data 
that are generated beyond a certain value. This method 
could effectively rule out all the extreme values in a quite 
simple manner. However, it could also result in some 
problems that might affect the simulation itself. First of all, 
this method changes the property and integrity of a 
probability distribution. Another problem is that when the 
value generated is removed, it would influence the 
sequence of the seeding process at the random number 
generation. 

Having these two disadvantages at mind, another 
method of dealing with this problem is used to truncate 
the unwanted values. Instead of removing all the values 
beyond a certain limit, this method changes the values that 
are beyond the limit to that limit value, so that the 
probability distribution would still keep the integrity and 
the random number generation process would not be 
messed up as well. This method seems to have solved the 
above mentioned problems quite well and also in a 
relatively simple manner. However, when it comes to the 
simulation process, this method would bring other 
problems to the modeling and the result analysis. One of 
the most obvious problems is that the probability at the 
truncation point would be abnormally high due to the 
truncation method. And the simulation behavior would be 
compromised due to the unexpected high probability at 
the truncation points. The drawbacks of these truncation 
methods call for an improved method of truncating 
probability functions which would restore the integrity of 
the probability functions and keep the shape of the 
probability function according to the histogram provided 
by the empirical data. This paper focuses on the truncation 

versions of the exponential family, especially the Weibull 
distribution. A literature review of the truncated 
distribution of the exponential family is discussed in the 
following paragraphs. 

A. Clifford Cohen Jr. [AC50] worked on the 
estimation of the mean and variance of the normal 
distribution with both the singly and doubly truncated 
samples. Cohen used the maximum likelihood estimation 
and the standard table to estimate the parameters of the 
truncated distribution. He also discussed the situations 
where the truncation point or the number of unmeasured 
observations in each “tail”. Following his work, Douglas J. 
Depriest discussed the truncated normal distribution in the 
analysis of the satellite data in his paper [DD83]. The 
truncated distribution is calculated from a set of raw data 
with the maximum likelihood estimation. After the 
calculation, the author examined the goodness of fit using 
the Kolmogorov-Smirnov test. He also gave the 
estimation from both parameters of a singly truncated 
normal distribution, which could be numerically solved 
when the truncation point is given. The reason that 
truncated normal distribution is used to estimate the 
radiance measurements from satellite-borne infrared 
sensors is to discard the unreliable samples which could 
lead to the inaccurate estimation. This is one common 
reason to use the truncated distributions in parameter 
estimation. 

Gamma distribution is another important member of 
exponential family. A. Clifford Cohen Jr. discussed the 
method of moments for estimating the parameters of the 
Pearson Type III samples [CO50]. J. Arthur Greenwood 
and David Durand also discussed parameter estimation 
using the maximum likelihood estimation for gamma 
distribution. He also provided a tabulated solution for the 
general type as well as the Erlang distribution. For the 
computational convenience, polynomial and rational 
approximations are also given in the paper [GD60]. With 
the aid of the works above, S. C. Choi and R. Wette 
[CW69] discussed two numerical methods for the 
parameters estimation of the gamma distribution, namely, 
the Newton-Raphson Method and the M.L. scoring 
method. Based on these works, D.V. Kliche, P.L. Smith, 
and R.W. Johnson [KSR08] used the maximum likelihood 
estimation and the L-moment estimators, which are 
widely used in the field of hydrology, to reduce the bias 
from the method of moment. They also provide the 
method to estimate the parameters of left truncated 
gamma distribution [RKS09] in the scenario where some 
samples are missing. 

Weibull distribution, another distribution that takes 
on the exponential form, could be used to describe the 
survival and failure analysis especially in the extreme 
situations. Lee J. Bain and Max Engelhardt [BE80] 
worked on the time truncated Weibull process by 
estimating the parameters of the distribution and the 
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system reliability, which is a support for the tabulated 
value for confidence intervals in the failure truncated 
process [FM76]. D. R. Wingo [DRW89] used the 
maximum likelihood method to estimate the parameters of 
left truncated Weibull distribution with the known 
truncation point. It should be pointed out that the 
inference of derivatives of incomplete gamma integrals is 
made possible by the work of R. J. Moore [MO82]. 
Robert P. McEwen and Bernard R. Parresol [MRB91] 
discussed the method of moments in detail to induce the 
moment expression of both standard Weibull distribution 
and the three-parameter Weibull distribution. More 
importantly, they gave the moment expression of the left 
truncated Weibull distribution, the right truncated Weibull 
distribution, and the doubly truncated Weibull distribution. 
In the following chapters, both the maximum likelihood 
estimation method and the method of moments are both 
used for the parameter inference of the truncated Weibull 
distribution. A simple production system is integrated 
with the truncated Weibull distributions to compare the 
effect of the truncated and the original distributions on the 
system. A breakdown analysis of the inner modeling 
mechanism is presented as well.  The truncation of the 
distributions could also influence the shipment 
consolidation models. The consolidation policies differ in 
the total cost and each cost component. To choose the 
time policy or the quantity policy could be decided by the 
different truncation alternatives. The following chapter 
will discuss the truncated Weibull distribution in the 
exponential family. 

2 THE FITTING OF WEIBULL DISTRIBUTION AND 

TRUNCATED WEIBULL DISTRIBUTIONS 

The three-parameter Weibull distribution is: 

cc 1 ((x a)/b)c x a
f (x,a, b,c) ( ) e

b b
− − −−=

 
with x a, a 0, b 0, c 0≥ > > >  

(2.1)

where a is the location parameter, b is the scale 
parameter and c is the shape parameter. The standard form 
of Weibull distribution is f(x,0,1,c), where it could be 
simply transformed to the three-parameter form by 
replacing x with x=a+bx’ [MRB91]. 

The left truncated three-parameter Weibull 
distribution is 

c cc 1 [(t a)/b ((x a)/b) ]c x a
f (x,a, b,c) ( ) e

b b
− − − −−=

 
with x t,0 a t, b 0, c 0≥ < < > > . 

(2.2)

 

 

The right truncated three-parameter Weibull 
distribution is 

( )( )

c

c

c 1 ((x a)/b)

T a /b

c x a
( ) e

b bf (x,a, b, c)

1 e

− − −

 − −  

−

=
−  

with a x T, a 0, b 0, c 0≤ ≤ > > > . 

(2.3)

The doubly truncated three-parameter Weibull 
distribution is 

( )( )

c c

c

c 1 [(t a)/b ((x a)/b) ]

t,T
T a /b

c x a
( ) e

b bf (x,a, b,c)

1 e

− − − −

 − −  

−

=
−  

with t x T,a t, b 0,c 0≤ ≤ > > > . 

(2.4)

To illustrate the effect of the truncation on the 
distribution, a sample data pool with a size of 113 is 
drawn. After the fitting of distribution, the Weibull 
distribution is chosen to be the one which can describe the 
sample data properly. The Weibull probability density 
function is 

1.570.57 [ 0.1002x ]f (x) 0.1573x e −= . (2.5)

And the Weibull cumulative density function is 

1.57[ 0.1002x ]F(x) 1 e −= − .
(2.6)

Now the focus is the fitting of truncated Weibull 
distributions. The probability density function of left 
truncated Weibull distribution: 

c cc 1 [(t a)/b ((x a)/b) ]c x a
f (x,a, b,c) ( ) e

b b
− − − −−= .

 
(2.7)

For a more convenient calculation and the 
differentiation, the above expression is transformed into 
another expression and a generalized form of probability 
density function of left truncated Weibull distribution is 
solved: 

b bb 1 [at ax ]f (x,a, b, t) abx e− −= .
(2.8)

The cumulative probability function is 

b b[at ax ]F(x, a, b, t) 1 e −= − .
(2.9)

With a sample of x, the log likelihood function of the 
sample is 

b b
i iL(a,b) n log a n log b (b 1) log x a(x t )= + + − − −  . (2.10)

To find the maximum likelihood estimates of the 
parameters, the global maximum of the above LLF is 
differentiated into these two functions: 

b b
i

b b
i i i

L
n / a (x t )

a
L

n / b log x a (x log x t log t)
b

∂ = − − ∂
∂ = + − −
 ∂


 

.
 

(2.11)

By solving the above non-linear equation system, 
estimated parameters a and b could be induced. After the 
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calculation, the sample data could be fitted in a LTWD 
with the truncation point chosen as t = 0.5. The LTWD 
probability density function with t = 0.5 is 

1.53380.5338 [0.0376 0.109x ]f (x) 0.1672x e −= .
(2.12)

And the LTWD cumulative density function with 
t = 0.5 is 

1.5338[0.0376 0.109x ]F(x) 1 e −= − .
(2.13)

The right truncated Weibull distribution (RTWD) has 
the following probability density function: 

b

b

b 1 [ ax ]

[ aT ]

abx e
f (x,a,b,T)

1 e

− −

−
=

−
.
 

(2.14)

The cumulative RTWD probability function is 

b

b

[ ax ]

[ aT ]

1 e
F(x,a,b,T)

1 e

−

−

−=
−  

(2.15)

where T is the right truncation point. The log-likelihood 
function of the RTWD has the following form: 

i

b b
i

L(a, b) n log a n log b (b 1) log x

ax n log[1 exp( aT )]

= + + − −

− − −


 .

 
(2.16)

To find the maximum likelihood estimates of the 
parameters, the global maximum of the above LLF is 
differentiated into these two functions: 

b b
b

i b

b
i i i

b b

b

L n nT exp( aT )
x

a a 1 exp( aT )

L n
log x a x log x

b b

na log(T)T exp( aT )

1 exp( aT )

∂ −= − − ∂ − −
∂ = + − − ∂
 −


− −



 
.
 

(2.17)

By solving the above non-linear equation system, 
estimated parameters a and b could be induced. After the 
calculation, the sample data could be fitted in a RTWD 
with the truncation point chosen as T = 12. The RTWD 
probability density function converts to 

1.65170.6517 [ 0.0915x ]f (x) 0.1517x e −= .
(2.18)

And the RTWD cumulative density function with 
T = 12 is 

1.6517[ 0.0915x ]1 e
F(x)

0.9961

−−= . 
(2.19)

The doubly truncated Weibull distribution (DTWD) 
has the following probability density function: 

b b

b

b 1 [at ax ]

[ aT ]

abx e
f (x,a, b, t,T)

1 e

− −

−
=

− .
(2.20)

The cumulative DTWD probability function is 

b b

b

[at ax ]

[ aT ]

1 e
F(x,a, b, t,T)

1 e

−

−

−=
−

(2.21)

where t and T are left and right truncation points 
respectively. 

The log-likelihood function of the DTWD has the 
following form: 

i

b b b
i

L(a, b) n log a n log b (b 1) log x

a(x t ) n log[1 exp( aT )]

= + + −

− − − − −




. 
(2.22)

After differentiation of the above LLF with respect to 
a and b, the functions are: 

b b
b

i b

b b
i i i

b b

b

bL n nT exp( aT )
(x )

a a 1 exp( aT )

L n
log x a (x log x t log t)

b b

na log(T)T exp( aT )

1 exp( aT )

t
∂ −= − − − ∂ − −
∂ = + − −∂
 −−

− −



  . (2.23)

With the truncation points t = 0.5 and T = 12, the 
DTWD which fits this sample is: 

1.63840.6384 [0.0305 0.0915x ]f (x) 0.1559x e −= .
(2.24)

And the DTWD cumulative density function with 
t = 0.5 and T = 12 is 

1.6384[0.0305 0.0948x ]1 e
F(x)

0.9961

−−= .
(2.25)

The histogram and the fitted distributions are put in 
the following graphs to see the difference between these 
alternatives. It could be observed that the shape of all the 
probability functions and the cumulative probability 
functions show some difference between each other. In 
the next chapters, the impact they have on the system 
performance when integrated in the production systems 
are discussed and analyzed. 

  

Figure 1.  Histogram and probability density distributions 
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Figure 2. Histogram and cumulative probability 
distributions 

3 TRUNCATED DISTRIBUTIONS IN PRODUCTION 

SYSTEMS 

Although the difference in parameters is not obvious, 
the effect of the truncation would be shown in the 
simulation. Here a simple model with two servers is 
introduced as an example. To illustrate the effect of the 
different distributions on the model, two sets of 
comparison simulations are made with all the distributions 
at source and distributions at the servers. Before moving 
on to the numerical results section, an effective variation 
reduction technique adopted in the simulation should be 
explained briefly. Common Random Number (CRN) 
[AL07, p. 578] is a technique which uses exactly the same 
stream of random numbers when comparing alternate 
model configurations. Put simply, the same stream of 
random numbers in the system gives all the alternatives 
the same condition. Moreover, the same random seed is 
used in different random number generations of all the 
distributions. This guarantees that the only reason that 
would lead to the difference in the final result is the 
distribution itself. 

3.1 VALIDATION WITH M/TR/1 QUEUEING SYSTEMS 

The purpose of this chapter is to validate the 
truncated distributions with the theoretical knowledge of 
queueing theory. If a queueing system consists of a source 
with an exponentially distributed inter-arrival time, one 
server with a generally distributed service time, this 
system is denoted as an M/G/1 system. Denote the 
average rate of customers as λ, the average rate of service 
station as μ, the service rate as ρ = λ / μ, the mean waiting 
time as W, and the mean number of customers in the 
system as L, then the following equation holds [RC81, 
p. 178]: 

L W= λ . 
(3.1)

The above equation is also known as the Little’s 
Theorem or the Little’s formula. 

For an M/G/1 system, the length of the system is as 
follows [GH98, p. 212]: 

2 2 2
sL

2(1 )

ρ + λ σ
= ρ +

− ρ
(3.2)

where 2
sσ  is the variance of the service time. This 

equation is also referred to as the Pollaczek - Khintchine 
(PK) formula. With the above formula the expected 
waiting time in the queue could also be calculated [HT91, 
p. 8]: 

E[T] E[L] /= λ . 
(3.3)

For an M/Tr/1 system, the specifics are listed as 
follows [RC81, p. 209]: 

• The expected waiting time 

2
s1

W ( )
1 2 2

μσρ= +
− ρ μ , 

(3.4)

• The expected system length: 

2 2 2
sL

2(1 )

ρ + λ σ
= ρ +

− ρ , and 
(3.5)

• The expected queue length [PHB93, p. 369]: 

2 2 2
s

qL
2(1 )

ρ + λ σ
=

− ρ .
(3.6)

For the service station, it follows the Weibull 
distribution with a mean of 3.89 and a standard deviation 
of 2.57.  

The Weibull probability density function is 

1.570.57 [ 0.1002x ]f (x) 0.1573x e −= .
(3.7)

And the Weibull cumulative density function is 

1.57[ 0.1002x ]F(x) 1 e −= − .
(3.8)

When the above model is run for 1,000,000 time 
units, the average queue length from the simulation result 
is 4.1074. The theoretical value of the average queue 
length is 4.1093. The expected waiting time is 18.4088 
when we read directly from the simulation results, while 
the theoretical value of average waiting time is 18.4238. 

Other alternative distributions are chosen to test the 
model consistency. If the left truncated Weibull 
distribution using the mean and variance method with the 
truncation point at t = 0.5 is chosen, the average queue 
length is 4.0994. The theoretical value of the average 
queue length is 4.0839. The expected waiting time is 
18.3732 when read directly from the simulation results, 
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while the theoretical value of average waiting time is 
18.3100. 

The next truncated distribution is the doubly 
truncated Weibull distribution using the mean variance 
method and the maximum likelihood estimation method. 
The simulation results show the average queue length is 
4.1291 and the theoretical value of the expected queue 
length is 4.0694. The average waiting time read from the 
model results is 18.5065. The waiting time calculated 
from the formula is 18.2447. If the model is run for 
10,000,000 time units, the results of the scenario with the 
doubly truncated Weibull distribution using the mean 
variance method and the maximum likelihood estimation 
method show that the average queue length is 3.9587 and 
the average waiting time is 17.7755. The theoretical 
values are 3.99 and 17.9169 respectively. 

3.2 TRUNCATED DISTRIBUTIONS IN PRODUCTION 

SYSTEMS  

After validating the truncated distributions, one 
production system with one source and two servers is 
simulated to test the effect of truncations. Firstly, the 
effect of the different distributions as source on the model 
is compared. The only modification in each round is the 
random number generation at the source component (but 
still with the same seed). A simulation of 100,000 time 
units is made for each alternative. The results of interest 
are the average waiting time (AWT) of both queues, the 
average queue length (AQL) of both queues, average 
dwelling time (ADT) in both servers, the Utilization (Ut) 
of both servers, the intergeneration time (IT), and the 
throughput (TP). The first round of simulation is made 
under the condition that the queue capacity is infinite. 

This result has a significant sense in the fact that the 
intergeneration time in this table reflects the means of 
each distribution. From this table, we could see that the 
means of these alternatives are different from each other. 
The means of the LTWD is the highest of all, while the 
RTWD is the lowest. The DTWD is the closest to the 
original Weibull distribution. The average queue length 
and the average waiting time is another important aspect 
of the model. The reason why the queue length of RTWD 
is higher than the other alternatives lies not only in the 
fact that the means of RTWD intergeneration time is the 
lowest. We take the first queue as an example. The queue 
length before the first server is dependent on two factors: 
the state of the server and the state of the arrival station. 
The server time obeys the exponential distribution with 
the means of 3.46, as shown in the ADT S1. So the 
decisive aspect of the queue length is the inter-arrival time 
of the source. There are two factors in the inter-arrival 
time: the relieving factor and the aggravating factor. If the 
intergeneration time is extremely small, this would put an 
aggravation to the waiting line. On the other hand, the 
large inter-arrival time is a relief to the waiting queue 

since it gives the system more time to digest the block in 
the queue. These two factors are the main reason for the 
difference in Table 1. 

Table 1. Weibull distribution as sources with infinite QC 

To illustrate the difference between the original 
Weibull distribution and the truncated version, another 
more extreme case is taken where the left truncation point 
is chosen to be 1. The choice of the truncation point can 
be significant in fitting the sample to a distribution. The 
left truncation point should be set to less than 0.5 in this 
case. An extreme truncation point would only lead to an 
extreme outcome. The consequences caused by this 
choice are listed in Table 2: 

Table 2. Weibull distribution as sources with QC = infinite 
without breakdowns 

Weibull distributions as Sources  

QC=inf no breakdown   

 Weibull LT 0.5 LT 1 

IT 3.88046 3.96201 4.50271 

AWT Q1 20.3359 16.1147 7.21497 

AQL Q1 5.24036 4.06691 1.6023 

ADT S1 3.46461 3.46247 3.4731 

Ut S1 0.89276 0.87382 0.77127 

AWT Q2 26.5871 23.5249 10.0238 

AQL Q2 6.85046 5.93655 2.22601 

ADT S2 3.50111 3.50429 3.50311 

Ut S2 0.90208 0.88411 0.77778 

TP 25765 25229 22202 

Weibull distributions as sources  

QC = infinite no breakdown   

 Weibull LT 0.5 RT 12 DT 0.5 12 

IT 3.8805 3.962 3.8113 3.8495912 

AWT Q1 20.336 16.115 23.557 19.222669 

AQL Q1 5.2404 4.0669 6.1951 4.9927802 

ADT S1 3.4646 3.4625 3.4699 3.4642568 

Ut S1 0.8928 0.8738 0.909 0.8997541 

AWT Q2 26.587 23.525 31.918 28.620898 

AQL Q2 6.8505 5.9365 8.3599 7.4329963 

ADT S2 3.5011 3.5043 3.4993 3.4991884 

Ut S2 0.9021 0.8841 0.9164 0.908554 

TP 25765 25229 26188 25963 
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The above discussion also shows another point of 
view regarding the source of these different systems. That 
is, the mean inter-generation time of the source also plays 
an important role in the system performance. The 
following chapter deals with the truncation of Weibull 
distribution focused on the mean time. 

3.3 TRUNCATION METHOD COMBINED WITH 

EXPECTATION EXPRESSION 

First of all, the expressions of mean and variance of 
the different truncated distributions should be discussed. 
For the sake of brevity, the mean and variance of 
3-parameter Weibull distribution and the 3-parameter left 
truncated Weibull distribution are listed below [MRB91]: 

• Original Weibull distribution: 

[ ]

[ ]
2

2

1
E X b 1 a

c

2 1
Var X b 1 b 1

c c

  = Γ + +   
      = Γ + − Γ +          

 (3.9)

• Left truncated Weibull distribution: 

[ ] ( )( ) ( )( )

[ ] ( )( ) ( )( )

( )( ) ( )( )

c

c

c

ct a /b

ct a /b 2

2
ct a /b

1
E X e b 1, t a / b

c

2
Var X e b 1, t a / b

c

1
e b 1, t a / b

c

−

−

−

    = Γ + −     
    = Γ + −     


  − Γ + −     

. (3.10)

When we combine the criteria of these two methods 
together, we have the two maximum likelihood estimation 
(MLE) functions, and two functions about the mean and 
the variance (M-V). So to utilize them to the fullest, not 
only the scale and shape parameters but also the 
truncation point is considered to be the unknown element 
here. 

The truncation point is no longer a constant before 
the simulation and the modeling, which means, besides 
the maximum likelihood estimators, another one or two 
functions are needed to determine the additional variable. 
For the left truncated and right truncated Weibull 
distribution, we take the maximum likelihood estimators 
and the mean or variance of the distribution. For the 
doubly truncated distribution, we need the mean and the 
variance as well as the maximum likelihood estimators, 
because the doubly truncated distribution has two 
truncation points to estimate. 

For the left truncated Weibull distribution, the 
maximum likelihood estimators and the mean expression 
(LTMM) are listed below: 

[ ] ( )( ) ( )( )
c

b b
i

b b
i i i

ct a /b

L
n / a (x t )

a
L

n / b log x a (x log x t log t)
b

1
E x e b 1, t a / b

c
−

∂ = − −
∂

∂ = + − −∂
   = Γ + −     


  . (3.11)

After the substitution of the parameters and the 
solution of the parameters of interest, the left truncated 
Weibull probability density function with t = 0.7261 is 

1.27210.2721 [0.1245 0.109x ]f (x) 0.2380x e −= .
(3.12)

And the LTWD cumulative density function with 
t=0.7261 is 

1.2721[0.1245 0.1871x ]F(x) 1 e −= − .
(3.13)

Similarly, all the alternatives of the truncated Weibull 
distribution using both maximum likelihood estimation 
and the mean-variance method could be induced. After 
running the same model where the queue has infinite 
capacity and the servers are without breakdowns, the 
result of the simulation is listed in Table 3. 

Table 3. Truncated Weibull distributions using combined 
method as sources 

Weibull distributions as sources   

QC=inf 
with no 

breakdown 
    

 Weibull LTMM RTMM DTMM 

IT 3.88046 3.88709 3.88521 3.90049 

AWT Q1 20.3359 24.0523 21.2174 19.3045 

AQL Q1 5.24036 6.18744 5.46078 4.94865 

ADT S1 3.46461 3.46538 3.46525 3.46368 

Ut S1 0.89276 0.89145 0.89184 0.88787 

AWT Q2 26.5871 27.4793 26.0267 25.0933 

AQL Q2 6.85046 7.06791 6.69738 6.43199 

ADT S2 3.50111 3.50111 3.50167 3.50239 

Ut S2 0.90208 0.90053 0.90102 0.89736 

TP 25765 25718 25730 25620 

This table reveals the effect of the truncation. Under 
the condition where the inter-generation times and the 
service times are almost the same, the queue length and 
the waiting time of with each truncated distributions still 
yield quite different results. 
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3.4 GOODNESS-OF-FIT TESTS OF VARIOUS 

DISTRIBUTIONS 

There are seven alternative distribution fittings to the 
empirical data, including the original Weibull distribution. 
Some of these distributions seem to be inappropriate to be 
mentioned as a “distribution fitting” as the parameters or 
the probability density function graph is far away from the 
histogram of the data. However, extra efforts need to be 
taken to test the fitness of distributions especially when 
some extreme cases are dealt. For example, when the n is 
very large, the test almost always rejects the hypothesis 
that the given data obey the target distribution [GD85]. 
There are some methods to test the goodness of fit of 
distributions. Two of the most commonly used ones are 
the chi-square test and the Kolmogorov–Smirnov test, or 
the K-S test.  

Firstly, the level of significance is set to be 0.05 and 
the number of levels is set to be 13 in all the following 
chi-square test. 

Table 4. Comparison of the total cost using two policies 

The results of the K-S test with the same level of 
significance and calculated K-S statistics is shown in 
Table 5. 

Table 5. K-S test results 

  Reject 
Hypothesis? 

    

unequal larger smaller

Weibull no no no 

LT05 no no no 

RT12 no no no 

DT no no no 

LTMM yes yes no 

RTMM no no no 

DTMM no no no 

From the results of these two goodness-of-fit tests, 
the left-truncated Weibull distribution with the combined 
method should be rejected. The left six distributions are 
integrated in a shipment consolidation model in the 
following chapter. 

4 TRUNCATED DISTRIBUTIONS IN SHIPMENT 

CONSOLIDATION MODELS 

Shipment consolidation is a shipping policy using 
joint stock replenishment and dispatching outstanding 
orders based on different criteria, namely, time and 
quantity. The vendor adopts an (s; S) policy, where s 
means the reorder point and S stands for the order-up-to 
level. Instead of immediately sending out the deliveries 
after the orders come in, the vendor would wait until one 
of the criteria is met. If the vendor decides to go for the 
time-based policy, the goods would be delivered after a 
fixed amount of time units. If the quantity-based policy is 
chosen, the vendor would send out the goods when the 
outstanding order quantity reaches a certain amount. Both 
of these shipment consolidation policies are based on the 
(s; S) replenishment policy [CCY00]. 

Therefore, the total cost that the vendor needs to 
consider falls onto four main cost components: 
replenishment cost, dispatching cost, warehouse cost, and 
the waiting cost. Please note that the last cost component 
is an imaginary cost which does not physically exist. It is 
the potential lost that the vendor keeps the customers 
waiting until the criteria are met. In a shipment 
consolidation model where the vendor needs to make a 
decision of whether to take the time-based policy or the 
quantity-based policy, the truncation of the distribution 
could influence the decision making as the results of the 
simulation using different distributions are quite different. 
The basic parameters for the shipment consolidation 
scenario is pre-set and tested for both policies with the 
original Weibull distribution. For the sake of brevity, only 
the comparison of the total cost is listed in the following 
table. 

Table 6. Comparison of the total cost using two policies 

  
chi-square 

statistic 
critical 
value 

Accept 
Hypothesis 

Weibull 11.3628 18.307 Yes 

LT05 12.6018 18.307 Yes 

RT12 10.9469 18.307 Yes 

DT 13.1062 18.307 Yes 

LTMM 15.4956 16.919 Yes 

RTMM 13.0177 16.919 Yes 

DTMM 11.4513 15.5073 Yes 

  Time Quantity Difference

OWD 442,320 442,960 -640

LTWD MLE 442,060 440,670 1,390

RTWD MLE 443,390 441,780 1,610

DTWD MLE 443,110 442,040 1,070

RTWD MM 442,490 442,980 -490

DTWD MM 442,440 442,760 -320
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It could be observed that the results of these runs with 
truncated Weibull distributions yield different decision 
making for the vendor. In the view of the total cost, the 
Time-based policy has less total cost in three scenarios 
and the Quantity-based policy outperforms its rival in the 
other three scenarios. The interpretation of these results of 
the simulation needs more detailed analysis than the count 
of the advantageous cases.  

5 CONCLUSION AND FUTURE WORKS 

The truncated distributions have shown great impact 
on the system performance. When some components of 
the system are integrated with the truncated distributions, 
the simulation model can be greatly influenced by the 
slightly changed parameters. Some simulation models are 
sensitive to the extreme situations where the small 
probability events have large influence on the system. For 
some simulation models, the rare events could cause 
severe blocking in the queues and the service stations. 
When the distributions are truncated, the extreme 
situations are changed to a certain amount. Therefore, the 
system couldn’t handle the extra burden and the whole 
system is trapped with the blocking. In the shipment 
consolidation models, the truncated distributions could 
influence the final decision making of the customer. The 
truncation has effect on each cost component as well as 
the total cost, although the truncated Weibull distributions 
and the original Weibull distribution have similar 
properties in many ways. 

However, an absolute comparison on the effects of 
truncated version and the original version could not be 
induced without the help of neural network and a huge 
sample database that could suffice the large time units 
which are needed for the simulation. Also, the method in 
this paper used to find the parameters of the truncated 
Weibull distribution could be improved to a method with 
higher efficiency and less complexity. In the future, an 
ideal simulation tool with truncated version would at least 
contain the above mentioned potential improvements and 
an accurate analysis of the results as well as the impact of 
the truncation should also be listed for reference. The 
truncation of the distributions is a powerful tool which 
could provide more significant insight of the simulation 
model with these improvements. 
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