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Optimizing order fulfillment is crucial for logistics
centers, especially in e-commerce with luxury fash-
ion, where dynamic conditions and strict customer ex-
pectations regarding speed, accuracy, and service signif-
icantly increase complexity. This study applies a three-
phase simulation-based approach: First, the existing sys-
tem is analyzed and modeled, then optimized picking
strategies are implemented using heuristic methods, and
finally their impact is evaluated through discrete event
simulation. The results show measurable improvements
with a productivity increase of up to 4% and a 2%
improvement in service levels, highlighting the value of
simulation-based optimization for increasing efficiency
and service quality in luxury fashion logistics.

[Keywords: E-Commerce Logistics; Luxury Goods, Picking
Optimization; Discrete-Event Simulation]

Die Optimierung der Auftragsabwicklung ist fiir Lo-
gistikzentren von entscheidender Bedeutung, ins-
besondere im E-Commerce mit Luxusmode, wo dy-
namische Bedingungen und strenge Kundenerwartun-
gen hinsichtlich Geschwindigkeit, Genauigkeit und Ser-
vice die Komplexitiit erheblich erhéhen. Diese Studie
wendet einen dreiphasigen simulationsbasierten Ansatz
an: Zunichst wird das bestehende System analysiert
und modelliert, anschlieBend werden optimierte Kom-
missionierungsstrategien unter Verwendung heuristis-
cher Methoden implementiert und schlieBlich wer-
den deren Auswirkungen durch eine diskrete Ereignis-
simulation bewertet. Die Ergebnisse zeigen messbare
Verbesserungen: Die Produktivitit steigt um bis zu 4 %,
das Servicelevel verbessert sich um 2 %. Damit wird
deutlich, welchen Beitrag simulationsbasierte Anséitze
zur Optimierung von Prozessen in der Luxusmode-
Logistik leisten.

[Schliisselworter:  E-Commerce-Logistik;  Luxusgiiter;
Kommissionierungsoptimierung; Diskrete Ereignissimula-
tion]
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1 INTRODUCTION

E-commerce has experienced a strong upswing in recent
years, including the luxury segment, which has increas-
ingly adapted to digital requirements [1], [2]. Today’s cus-
tomers expect personalized services, high quality standards,
and, above all, almost immediate delivery [3], [4], [S]. This
places greater demands on logistics centers: efficient pro-
cesses are necessary to avoid delays, errors, and losses in
service levels.

In the luxury goods sector in particular, the high value
of the goods requires additional care and quality assurance.
At the same time, it is important to increase the picking per-
formance and reduce costs. Digital twins and simulations
offer new approaches for modeling complex processes real-
istically, identifying weak points, and testing improvements
virtually.

The aim of this work is to develop an improved picking
strategy in a person-to-good context for a reference logis-
tics center in luxury e-commerce. The core is the implemen-
tation of an algorithm that uses resources more efficiently,
shortens walking distances, and orchestrates order process-
ing (prioritization, sequencing, resource allocation). This
should shorten time to customer, increase process speed,
reduce the error rate, and improve the service level. The
measures developed will be evaluated using simulation and
compared with the current situation. The approach leads to
a practice-oriented solution that ensures high efficiency and
customer satisfaction even with increasing order volumes.

After an overview of the state of the art in Chapter 2,
including a literature review and identification of the ad-
dressed research gap with the research objective, Chapter
3 describes the modeling approach used. In particular, the
analysis of the reference system is discussed. Chapter 4 ex-
plains the weaknesses of the current picking algorithm and
the resulting improved picking strategies. Chapter 5 deals
with the implementation and execution of the experiments,
as well as the evaluation of the results of the simulation runs.
This is followed by a discussion of the results in Chapter 6,
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before Chapter 7 summarizes the work and provides an out-
look.

2 STATE OF THE ART

Order picking is a central component of logistics and can ac-
count for up to 50 % of warehouse costs [6]. It is carried out
either according to the person-to-goods or goods-to-person
principle and is increasingly supported by digital technolo-
gies such as pick-by-scanner, pick-by-voice or pick-by-light
[7], [8]. Common strategies such as zone, batch, and wave
picking offer different advantages in terms of route opti-
mization and throughput time, but sometimes require com-
plex warehouse management systems [9], [10].

Simulations, especially discrete event simulations, make
it possible to test such picking strategies virtually and try out
optimization measures without interfering with operations
[11], [12]. Algorithmic optimization uses exact, heuristic,
and increasingly Al-based methods that are particularly
suitable for combinatorial problems such as route planning
or order bundling [13], [14].

In the following, related works from the literature on the
subject are presented.

2.1 LITERATURE REVIEW

The analyzed literature shows a variety of approaches for
optimizing picking and delivery processes in a person-to-
goods context. Gademann et al. examine order bundling in
parallel aisles and develop a branch-and-bound algorithm
combined with a 2-opt heuristic that reduces the through-
put time of order waves [15]. Klumpp et al. apply data en-
velopment analysis with the free disposal hull approach in
a food warehouse and show that the efficiency of manual
pickers can be reliably measured [16]. Dynamic order ar-
rivals are handled by D’Haen et al. using a large neighbor-
hood search algorithm, which significantly improves effi-
ciency and throughput time in a spare parts warehouse [17].

In the e-commerce context, Onal et al. examine fulfill-
ment centers and optimize picking lists using mixed-integer
programming and heuristic methods, reducing fulfillment
time by up to 42% [18]. Pourahmadi et al. focus on delivery
networks and apply robust optimization based on the Mul-
vey model, reducing costs by an average of 21.5 % [19].
In the food sector, Alrasheed et al. combine batch and zone
picking in a hybrid model and achieve a 13.2 % increase in
efficiency using genetic algorithms [20].

Other studies incorporate human factors: Gabellini et
al. consider learning and fatigue effects and use a combi-
nation of genetic algorithms and machine learning to re-
duce picking times [21]. Gu et al. address same-day de-
livery scenarios with an integrated online batching and of-
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fline routing approach, supported by ant colony algorithms,
and achieve significant reductions in processing time [22].
Raj et al. combine person-to-goods picking with stochastic
queueing models to jointly optimize picking and delivery
processes and increase delivery reliability [23]. Finally, Tao
et al. develop a sustainable inventory strategy using Paral-
lel Chicken Swarm Optimization that reduces costs and in-
creases the service level to over 76% [24].

2.2 RESEARCH GAP AND GOAL

The studies show that significant efficiency gains, cost re-
ductions, and service improvements can be achieved by us-
ing different optimization methods, from exact approaches
to heuristic and metaheuristic methods to Al-based methods
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. How-
ever, the models are often industry-specific and their trans-
ferability to other contexts is limited. There are still gaps,
particularly in the luxury segment, which is characterized
by high item values, sensitive goods, and a low degree of
automation with simple WMS systems. This is where the
present work comes in, developing and evaluating practical
and technically feasible optimization approaches for order
picking in luxury logistics centers.

Based on the identified research gap, three key questions
arise: First, it will be examined how a suitable picking strat-
egy should be designed to make processes in luxury logis-
tics centers with a low degree of automation more efficient
and effective. Second, the specific requirements that a pick-
ing algorithm must meet in this context will be examined,
particularly with regard to the heterogeneity and sensitivity
of the items. Third, the study aims to examine the condi-
tions under which a specially developed algorithm is able
to reliably meet the high service requirements of the luxury
segment in terms of speed, precision, and quality, while at
the same time integrating seamlessly into existing systems.

3 MODELING APPROACH

This section presents the modeling approach that is the
foundation of this work. First, the system analysis that was
carried out and the subsequent data collection and prepara-
tion are discussed after the objectives of the approach have
been defined. Subsequently, a mental abstraction model is
constructed, which is then implemented in the Plant Simu-
lation software (Version 2201). Finally, the verification and
validation that were carried out are described, which checks
the implemented model for correct replication of the real
system.

3.1 OBJECTIVES

The objective of this work is to systematically analyze and
optimize the picking process in the luxury segment of on-
line retail. First, the relevant influencing factors are exam-
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ined and the existing reference system is described in detail.
Based on this, a special picking algorithm is developed that
meets the high requirements of the luxury segment and im-
proves the current state of affairs in the logistics center. Sim-
ulation experiments are then used to evaluate the efficiency
and effectiveness of the algorithm in order to quantify its
contribution to meeting service requirements. Finally, the
findings are combined to design a holistic and optimized
picking strategy for manual warehouses in the luxury seg-
ment.

3.2 SYSTEM ANALYSIS

This section analyzes the reference system. First, the sys-
tem is described and the current picking process is detailed.
This is followed by an analysis of the factors influencing the
picking process.

3.2.1 SYSTEM DESCRIPTION

This work is based on a real reference warehouse belonging
to one of the world’s largest e-commerce companies for lux-
ury fashion. Thanks to its strategic location and good con-
nections to road, rail, and air transport, it is possible to de-
liver to some nearby customers on the same day. In addition
to excellent customer support, the retailer offers personal-
ized services such as a personal shopper for VIP customers.

The reference system is divided into three areas: goods
reception, storage, and goods dispatch (see fig. 1). In the
goods reception area, goods are checked, labeled, and pre-
pared for storage; returns are handled in the same way. New
items are also photographed and measured. In the storage
area, goods are stored according to fixed strategies, with a
distinction being made between lying goods (e.g., clothing,
bags, shoes) and hanging goods (e.g., delicate textiles). The
warehouse itself is structured into separate units (fire com-
partments) and four vertical levels.

The picking process combines zone and batch picking:
pickers work in zones and pick items in standardized Eu-
roboxes (also referred to as collection boxes in this docu-
ment). The warehouse operates according to the “person-to-
goods” picking principle, supported by a warehouse man-
agement system (WMS) with limited automation, although
a conveyor belt transports the goods in collection boxes
between areas. Single-item orders (SIO) are forwarded di-
rectly to gift wrapping, while multiple-item orders (MIO)
are first consolidated. After a final quality check in the pack-
aging department, the goods are shipped via various carri-
ers.

3.2.2 ACTUAL PICKING PROCESS

According to the VDI guideline 3590 [25], the picking pro-
cess is divided into three systems:
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Figure 1: Material flow in the reference system

* Material flow system: Manual person-to-goods
picking with collection boxes (24 Euroboxes).
Storage compartments are up to 196 cm high; aids
such as rolling stools are available. Transfer takes
place at fixed conveyor belt stations.

* Information system: Control via WMS system with
prioritization (e.g., express orders). The process is
paperless and uses “pick-by-scanner.” Each removal
is confirmed by scan, and batches are formed by
zone. Packaging requirements control the further
flow of goods.

* Organization system: Warehouse divided into dif-
ferent zones, pickers are assigned manually via a
dashboard. Standard orders are item-oriented, flash
orders are order-oriented. MIO orders are consoli-
dated in multiple stages across several zones.

3.2.3 CREATION OF A PICK RUN

When an order is received, the system checks the availabil-
ity of the items and creates an entry in the picking reserva-
tion list for each item. The picking algorithm works through
this list step by step: First, items from flash orders (across
zones) are searched for. If any are available, the pick run is
filled with these items up to the maximum run size or until
the available flash items are exhausted. If there are no flash
orders, the system searches for items in the picker’s zone.
The starting point is the highest-priority item in the zone
(FIFO applies within the same priority level), which deter-
mines the destination of the pick run. Accordingly, only ad-
ditional items that are assigned to the same destination can
be included. This restriction does not apply to SIO orders,
but it does apply to MIO orders due to subsequent con-
solidation. The process is repeated until no more suitable
items are found, or the run size is reached. The algorithm
then sorts the picking positions in ascending order by row
and bin location. The picker scans an empty collection box
and picks the items according to the specifications: scan the
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compartment, pick the item, confirm, and place it in the box.
After the last item in the pick run has been completed, the
collection box is placed at a transfer station and the pick
run is ended. Special cases, such as missing items, are han-
dled by specialized employees. Figure 2 shows the process
schematically.

Manual
Request new pick run picking
process

v

Picking algorithm
‘ Search for express items ‘

Search for item with highest
priority & assigned zone

| ;

Search for additional items

A general picking destination is
assigned for this item.

Items are sorted in ascending order
by row and bin in the warehouse.

—~ - in same zone
{j - with same destination

Scan empty collection box

Start pick run

@ Pick items

Place collection box
on conveyor

End pick run

Figure 2: Process flow of a picking operation in the
warehouse using the current picking algorithm

3.2.4 INFLUENCING FACTORS IN THE PICKING PROCESS

The picking process is influenced by a variety of factors,
which are shown in the Ishikawa diagram (fig. 3). The cus-
tomer group is particularly important, as it determines the
priority of the incoming customer order. In addition to sys-
temic rules, such as preferential processing of older or-
ders (with the same priority level) or prioritization of items
within MIO orders, storage conditions such as shelf layout,
distances between picking units, and the exact position of
items also influence the process.

In addition, item characteristics play a central role,
e.g., size, packaging (shoe box, hanging goods), special
categories such as returns, bestsellers, or oversized items.
Added to this are external requirements such as delivery
times, which are based on the carriers’ pickup windows, as
well as internal factors such as the available capacity in the
logistics center. The latter is coordinated by the shift super-
visor in order to optimally allocate personnel to warehous-
ing, consolidation, gift wrapping, and final packaging.

Finally, the order characteristics themselves, such as the
distinction between SIOs and MIOs, also have an impact
on planning and organization. Taken together, these factors
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illustrate the complexity of the picking process and the need
to take them into account appropriately in the algorithm.
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Figure 3: Ishikawa diagram of influencing factors in the
picking process

3.3 DATA PROCESSING

After the comprehensive system description and process
recording, data processing follows. This step includes the
collection and preparation of the data in order to create the
system and the resulting model in the most complete and
accurate way possible.

3.3.1 DATA COLLECTION

During the on-site process assessment, the current picking
process was examined in detail. This included analyzing or-
der volumes, lead times, warehouse structures, and capacity
utilization.

Using qualitative methods such as interviews and work-
shops with shop floor employees, WMS IT specialists, and
managers, valuable insights into the processes and weak-
nesses were gathered. These were supplemented by obser-
vations and personal experiences with the process. Inter-
views were conducted partly online and partly directly in
the work areas in order to gain authentic insights. These par-
tial results were used not only to identify problem areas, but
also to prepare the verification and validation work for the
simulation model.

Building on this, quantitative methods were used: time
measurements of individual process steps, the evaluation of
specific WMS databases, and statistical analyses of histor-
ical process data. This enabled key figures such as average
throughput times and capacity utilization to be determined.

3.3.2 DATA PREPARATION

The second step is data handling and preparation. First, the
data was cleaned to check its completeness, quality, and
consistency. Partially missing data were supplemented. It
was divided into the following three categories: information
about the system in general, functionality and process flows
of the picking process, and quantified data.
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A sample of five days was selected over a period of five
months. Two basic data tables were collected: the picking
reservation list (items “ready for picking”) and the list of
booked picking entries (items “actually picked”). Only reg-
ular storage locations that follow the process defined above
were taken into account. Special validation data sets were
created for four days, as the fifth data set was incomplete in
its picking reservation list.

Additional WMS data was also evaluated: An inventory
revealed a median of 11 items per storage location. Analysis
of the consolidation center showed an average processing
time of 1.19 hours per order in a 6-month period. The ad-
justed lists of booked picking entries were used as the basis
for creating fictitious orders (see section 3.6), from which
the warehouse structure, article properties, order quantities,
and customer segments were also derived.

3.3.3 PICKING TIMES

Furthermore, the model should determine the picking times
stochastically. For this purpose, the standardized workflow
time analysis (MTM) is used, which breaks down the pro-
cess steps into basic movements (e.g., grasping, bringing,
releasing) and specifies target times for them [26]. This al-
lows theoretical times to be determined independently of in-
dividual working styles. Three main steps were recorded:

Step A Picking up the collection box

Step B Retrieving the order picking unit (including search-
ing and picking)

Step C Depositing the collection box

Table 1: MTM times of the triangular distribution for the
steps of the picking process

Process Minimum Most Likely Maximum
Step Value a Value c Value b
Step A 21.84s 27.30s 32.75s
Step B 18.92s 43.61s 79.11s
Step C 9.02s 11.28s 13.53s

The time metrics derived from the official MTM data tables are
available on the website of the MTM Association e.V. [26].

Comparison with actual time measurements showed a
maximum deviation of £8 % and confirmed the reliabil-
ity of the MTM times. A triangular distribution (minimum,
most probable, and maximum values) was used for model-
ing, as no extensive historical data were available per pick
run. The average number of items per storage location was
taken into account in the search process, and the mean value
was used conservatively. For regular steps such as door pas-
sages or climbing stairs, an equal distribution of the result-
ing MTM analysis times was used.
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3.4 MODEL DEVELOPMENT

The modeling approach includes defining requirements,
underlying assumptions, and building an abstract mental
model. The abstract model is then implemented in Plant
Simulation. Finally, the verification and validation work is
explained.

3.4.1 REQUIREMENT DEFINITION AND MODEL ASSUMP-
TIONS

The requirements (RO1 to R13) are divided into five cate-
gories: Among the process requirements, the model should
be able to realistically map all recorded sub-steps of the
picking process (R01). At the end of a pick run, pickers
should deliver the collection box to the next conveyor belt
delivery station (R02). Pick times, except for walking times,
should have a newly randomized time that follows a suit-
able statistical distribution each time they occur (R03). The
consolidation center should be able to be initialized with an
adjustable start allocation (R04). In addition, this should be
mapped using a simple table and not comprehensively mod-
eled (ROS). The dwell time of an order in the consolidation
center should be adjustable and follow a suitable statistical
distribution (R06). The category of time requirements in-
cludes throughput times, which should be measurable for
each process step and pick run (RO7). The following re-
quirements are placed on the simulation model. The layout
should be created using adjustable nodes (R08). No goods
should be mapped; only the layout with paths and shelves.
SKUs in Plant Simulation, as BE (movable elements), are
not mapped to prevent the number of elements in the model
in Plant Simulation from becoming too large (R09). Fur-
ther requirements are placed on the simulation runs. Zone
assignment should be flexible and adaptable (R10). Ficti-
tious orders and thus order volumes should be randomly
re-generated for each new experiment observation based on
theoretical distributions of the recorded data points (R11).
During a simulation, different seeds should be set to allow
for fluctuations in the process flow (R12). For validation
purposes, the simulation model should be compared with
real data sets to assess the accuracy and significance of the
model (R13).

To reduce system complexity, the following eight as-
sumptions (AO1 to AO8) are made. These mainly relate to
the resources and behavior of the model. Since the aisles in
the warehouse are 1.20 m wide, it is assumed that a picker
cannot turn around in the aisle, but must walk the entire
length of the aisle (AO1). Walking speed is also simplified
and set to 1 m/s for all employees (A02). Each picker drops
off the collection box at the nearest conveyor belt drop-off
station (A03), and the number of pickers remains constant
throughout the simulation (A04). In addition, there are no
breaks, which means that the picking processes run continu-
ously (A05). The packaging department can accept any col-
lection box from a pick run, as performance is optimized for

Page 5



picking and sufficient buffer space and capacity are avail-
able at all times (A06). For simplicity, it is assumed that all
items in the “Ready for picking” status are located exactly
where they are needed in their storage location, so that no
items are missing and no picking errors occur in the pick-
ing process (A07). The location position is automatically
assigned as soon as the order is received in the system to en-
sure that the goods are handled after a shorter storage time
(A08).

3.4.2 ABSTRACTION MODEL AND IMPLEMENTATION

Based on the performed process recordings, system analy-
sis, warehouse structure, and defined requirements and as-
sumptions, a mental model is first created, abstracted from
the real system, which outlines the sub-functions for im-
plementation. During layout creation, correct warehouse di-
mensions are taken into account, nodes are defined and con-
nected via a matrix (paths, doors, stairs). Storage locations
are assigned to the shelves by sensors in Plant Simulation
so that the route algorithm already integrated in the soft-
ware can be used. Picking zones are defined and assigned
to the pickers. In the model, pickers are represented as vehi-
cle objects as vehicle objects with attribute memory for the
active picking list, important key figures for evaluation, ac-
tive zone assignment, and time measurement. A list of items
ready for picking is provided for the picking algorithm,
which builds the backbone of the model. The functionality
of the existing algorithm has already been described above
in its current status. While processing an active picking list,
each item position is targeted. As soon as the sensor mod-
eled in Plant Simulation is triggered, the picker is stopped,
and the item is removed. After completion of a pick run, the
nearest conveyor belt delivery station is always approached,
the collection box is delivered, and a new pick run is re-
quested. The consolidation center is theoretically mapped
using a data table. The size of this table (number of consoli-
dation positions, i.e., maximum number of MIOs that can be
completed simultaneously) is fixed and cannot be adjusted
during a simulation run. In this way, the restrictions relevant
to the picking algorithm are taken into account, but are pro-
cessed methodically by means of time distribution and not,
as in simulated picking, by means of moving elements. This
simplifies the modeling effort and the throughput time of
the experiments. Finally, various methods for recording key
figures and parameterization functions are required to con-
trol and evaluate future simulation results. These can be rep-
resented as data tables, variables, or diagrams. With these
preliminary considerations, the mental model can be imple-
mented in Plant Simulation. The input parameters required
for the experiments include:

e Maximum number of items per picking order
* Number of pickers

* Picking times

» Walking speed of pickers

* Initial fill level of consolidation
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¢ Consolidation times
¢ Order structure
e Zone division

3.5 VERIFICATION AND VALIDATION

The verification and validation of the simulation model
serve to ensure that the model realistically represents the
actual system and delivers reliable results [27].

The verification of the simulation model was carried out
iteratively. Each subfunction implemented in Pant Simula-
tion was checked for technical, logical, and systemic errors.
In addition to normal processes, extreme scenarios were
also tested to ensure consistent results. Particular emphasis
was placed on the correct formation of pick runs, the filling
of consolidation centers, and compliance with the quantity
structure. In addition, plausibility checks were integrated
into the code so that only consistent data is recorded, and
malfunctions, such as an overloaded consolidation center,
automatically stop the simulation.

For validation, criteria were defined and reviewed in ex-
pert interviews. Employees at the reference logistics cen-
ter evaluated process times, routes, logic, dependencies, and
bottlenecks in particular. This confirmed that the model not
only works correctly from a technical standpoint, but also
meets the requirements of the work. The criteria include
completeness, consistency, and accuracy (V01 to VO05).
Completeness means that all relevant process steps (VO1),
requirements, and assumptions (V02) are taken into ac-
count. Consistency requires a model sequence that is consis-
tent and logically structured (VO03). Accuracy is verified by
comparing simulation results with real data. A t-test showed
that the simulated picking times do not differ statistically
significantly from the real ones (V04). All orders in the val-
idation sets were processed within one working day (VO05).
Although there were larger deviations in two smaller data
sets, these can be explained by the small amount of data
in the individual data sets. In the more extensive data sets,
the deviations were largely within the tolerance of +20 %.
Overall, 70 % of the comparison values were within this
limit, meaning that the criterion was partially fulfilled. In
summary, it can be concluded that the criteria for complete-
ness and consistency were fully met, while the criteria for
accuracy were largely fulfilled. The model thus achieved
a conformity of around 94 % and can be considered suffi-
ciently valid.

3.6 CREATION OF FICTIONAL ORDERS

As part of the process analysis, the theoretical distribution
behind the order structure in the warehouse was analyzed
and determined on a daily basis. This is recompiled for each
experiment run so that the picking algorithms developed are
not tailored to a specific order scenario, but rather their use
can be evaluated in the context of possible scenarios. Before
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each simulation run, the order list is therefore regenerated
in order to map different random scenarios and better quan-
tify improvement measures. The basis for this is the pick-
ing performance of the pickers, which averages 30 picking
units per hour, so that the number of items that can be pro-
cessed daily can be calculated from the number of employ-
ees and the shift duration. Taking into account an average
of 1.8 items per order, the theoretical number of orders is
calculated. These orders are then divided between a mix of
around 30 % MIO and 70 % SIO orders, with MIOs con-
taining between 2 and a maximum of 20 items. The upper
limit of 20 items reflects observed practice, as larger orders
occur only as rare outliers and therefore do not represent the
normal operating case. A backlog ratio of 59 % ensures that
orders from previous days or from global time zones are
realistically reflected. Priorities are assigned according to
WMS data; 1 % of all orders are flash orders. The items are
then randomly distributed to storage locations (on average
63 % lying goods, 37 % hanging goods). Finally, the ship-
ping method and carrier are assigned, with flash orders auto-
matically assigned to the same-day delivery service. These
values were collected in the data collection during the pro-
cess recording over a 6-month period using the median. The
picking reservation list generated in this way forms the input
for the picking algorithm.

4 OPTIMIZED PICKING STRATEGIES

This section deals with the design of the new picking strat-
egy. The weak point analysis of the process recording is
first completed and presented in the validated model. From
this, potential improvements are derived in the form of new
strategies, which are then implemented in the model.

4.1 WEAK POINT ANALYSIS

During the analysis of the reference system, several weak-
nesses were identified, from which concrete potential for
improvement in efficiency, flexibility, and customer focus
can be derived.

A key problem lies in the inflexible zone allocation. The
current allocation logic is based on a proportional calcula-
tion of the pickable items per zone and is updated manu-
ally in the WMS. If updates are not carried out regularly,
imbalances in processing arise, which can lead to delays
in MIOs and overload the consolidation center. Since the
simulation model does not allow manual intervention, au-
tomatic employee changes at fixed intervals of 30 minutes
were implemented as in the reference system based on ex-
pert interviews. The proportionally calculated distribution
is rounded to whole persons and, in the event of deviations,
compensated for by adjustments in the affected zones. To
avoid unnecessary walking distances, an effort is also made
to assign employees to the same zone as before, if possible.
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Another weakness becomes apparent when item avail-
ability within the zones is low. As long as there are enough
orders, the picking performance remains high, but once a
certain tipping point is reached, utilization drops signifi-
cantly because the pick runs can no longer be filled com-
pletely. This can be remedied by removing individual zones
at a later point in time to create larger areas. The model ex-
amines whether zones spanning storage units or floors are
more suitable, with the latter associated with longer walk-
ing distances.

In addition, the current picking algorithm does not take
into account the cut-off times of the carriers. This means
that even highly urgent orders can be processed late. To im-
prove the service level, an additional sorting heuristic is in-
troduced: dynamic cut-off priority. This complements the
existing prioritization and ensures that time-critical orders
regarding shipment are ready for pickup on time.

Finally, the picking process has weaknesses in route op-
timization. The routes of the pickers are not optimally coor-
dinated with the end points of previous pick runs, which
causes unnecessary walking time and distance. Dynamic
route optimization based on the S-line principle is intended
to ensure that pick runs are as efficient as possible and return
trips are minimized.

4.2 DYNAMIC CALCULATION OF SHIPPING PRIORITY

In order to further increase the service level, a new shipping
priority is introduced in this work. By taking this dynami-
cally calculated priority into account, orders in the process
are prioritized more punctually to ensure that they are ready
for shipment on time. The newly introduced shipping pri-
ority is calculated dynamically every ten minutes based on
the cut-off times of the carriers and the time schedule of
the simulated working day. Each order is assigned a vari-
able priority number based on the time remaining until the
next shipping deadline: Orders that need to be shipped soon
are given a higher priority (mathematically low number) and
should be processed first. The exact implementation of pick-
ing according to the additional shipping priority depends on
the respective picking strategy and is explained in more de-
tail hereinafter.

4.3 STRATEGY 1: WAVE PICKING

S
@ ‘ El/’a )c\@OQ

Release of critical Improved Faster delivery

Creation of the
items in waves picking list picking run to the customer

Customer Priority

Figure 4: Simplified functionality of the wave picking
strategy
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In wave picking, not every pickable item is released in
the system immediately upon receipt. Instead, items are re-
leased systematically at intervals of 30 minutes, coordinated
with the recalculation of employee zone assignments. These
waves are calculated based on the occupied zone distribu-
tion and the priority of the items. As described above, pick-
ers are assigned based on the number of the next important
items in the respective zone. The number of items that could
theoretically be picked within the time interval is then calcu-
lated for each occupied zone based on the expected picking
performance. The quantity of these items is assigned to the
zone, while also checking which items from previous waves
have not yet been picked and are therefore still available.
A simplified illustration of how this strategy works can be
found in fig. 4.

Two heuristics support prioritization when releasing
new items:

* The urgency with regard to the carrier’s cut-off time
(shipping priority): Items that are more urgent due to
the scheduled pickup time are released preferentially
to ensure that orders are ready for shipment on time
(see section 4.2).

* Consideration of initial customer priority: This takes
into account the customer’s initial priority to ensure
that orders are processed according to customer re-
quirements without neglecting the overall urgency.

600
500 Longer processing time
for continuous

400 (complete) wave picking \
300
A
200 I' 'I
) I
0 '

Final wave
in hybrid
Order picking by waves wave picking
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Figure 5: Release cycles for items ready for picking in the
wave picking strategy over the entire working day

Figure 5 shows how wave picking structures the pick-
able items into distinct waves. Too long intervals between
waves may lead to delays if only a small number of items
are available. For this reason, an additional mechanism is
used in this strategy as soon as there are too few items in the
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system (once the breakpoint is reached). In this case, wave
picking is canceled to ensure a faster response time. This
procedure ensures that orders are not held back when the
order situation does not require it.

4.4 STRATEGY 2: SHIPMENT-PRIORITIZED PICKING
o =

o3n = WS (@)
3 B) D)8

Customer Priority

a‘

Creation of the
picking list

Faster delivery
to the customer

Direct release
of all items

Improved
picking run

Figure 6: Simplified functioning of the shipping-priority
picking strategy

The dynamic, shipping-priority picking strategy ex-
pands the classic logic of the existing picking system by
flexibly adapting order prioritization to shipping time re-
quirements. Instead of only considering the static priorities
(mainly consisting of customer groups) of the orders, the
priority assessment shown above is carried out, which is
based on the shipping times of the respective carriers and
their specific cut-off times. A simplified illustration of how
this strategy works can be found in fig. 6.

For this purpose, each order is assigned a dynamic ship-
ping priority level that takes into account the time remaining
until the shipping deadline. The picking algorithm sorts the
orders primarily according to this newly calculated shipping
priority to ensure that time-critical orders are processed and
prepared for shipping on time. Within this dynamic shipping
priority, the original customer priority of the order, which
was specified during order entry and reflects the importance
of the customer, is then taken into account. This two-stage
prioritization ensures that both time-critical and customer-
relevant factors are included in order processing.

5 IMPLEMENTATION AND EVALUATION

This section describes the implementation and execution of
the experiment. This is followed by an evaluation of the re-
sults.

5.1 SIMULATION SETUP
First, the setup of the simulation will be discussed.
5.1.1 INITIAL CONDITIONS AND PARAMETERIZATION

The simulation experiments are based on previously defined
input parameters to ensure comparability between the indi-
vidual scenarios. Important parameters include the number
of pickers (30), the pick run sizes, i.e., the number of items
per pick run (8 and 15), start fill levels, and number of posi-
tions in the consolidation center, picking times and walking
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speeds, and the update interval for employee zone assign-
ment. This creates realistic conditions based on the process
recordings and validation steps. Only individual parameters
were varied in a targeted manner to investigate their influ-
ence. The number of pickers was set arbitrarily to 30; since
the order volume scales accordingly, this parameter does not
act as an influencing factor but rather serves as a fixed base-
line across all experiments. The pick run sizes were chosen
to cover the typical range observed in practice. Likewise,
the start fill levels and the number of consolidation positions
were defined to represent typical, valid operating conditions
without simulating extreme cases.

5.1.2 DEFINITION OF THE EXPERIMENTS

The experiments were divided into three blocks: In the first
block, the preliminary investigations required to deter-
mine the optimal update interval for zone assignment, the
investigation of different pick run sizes (8, 10, 15, 20), and
the analysis of different zone structures (the current zone
division taken from the reference system and cross-floor or
cross-unit zones) are carried out. The results of these pre-
liminary investigations are then transferred to the two actual
simulation studies. The first simulation study focuses on
individual influence heuristics in the picking algorithm. The
first study looks at efficiency gains through route optimiza-
tion within a pick run and global zone cancellation once the
minimum number of orders has been reached, also referred
to as the breakpoint in this work. Furthermore, the combina-
tion of both approaches and the introduction of an additional
heuristic that gives preference to spatially close items within
a priority level will be investigated. The second simulation
study will then be used to compare the developed strategies
with the actual state of the system in terms of service level
(effectiveness) and picking performance (efficiency).

5.1.3 KEY PERFORMANCE INDICATORS

The evaluation of the different strategies is based on two
Key Performance Indicators (KPIs): the service level, also
referred to as the on-time order fulfillment rate (effective-
ness), and the overall picking performance (efficiency). In
this context, efficiency refers to the optimal use of resources
(e.g., working time per processed item), while effectiveness
measures goal achievement—whether the customer experi-
ences a reliable and timely delivery.

The first KPI measures effectiveness and reliability by
ensuring that orders are shipped on time, thus reflecting the
service level offered to the customer. The numerator indi-
cates the number of orders that were actually completed
within the transport company’s cut-off time, while the de-
nominator indicates the total number of orders that could
have been shipped on time with the theoretical lead times:

Number of on-time orders 100
Total feasible orders (D
(%]

Service Level =
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The second KPI captures system efficiency and throughput,
expressed as the number of items processed per picked hour
as picking performance measure:

Total number of processed items

Picking Perf =
icXIng Teriormance Total employee working hours

Items
Hour

2

5.1.4 NUMBER OF OBSERVATIONS REQUIRED

To ensure a statistically valid basis, an iterative approach
was used to determine the sample size. Starting with five
observations per experiment, the calculations showed that
at least seven repetitions are necessary to maintain a confi-
dence level of 95 % and to satisfy the condition ¢- ﬁ > Fl.

This ensures that the results are reliable. [11]

5.2 RESULTS

The following subsections explain and evaluate the results
of the simulation runs.

5.2.1 RESULTS OF PRELIMINARY INVESTIGATIONS

The results of the preliminary investigations carried out are
discussed below.

5.2.1.1 Optimal Update Intervall Short intervals (e.g.,
10 minutes) enable dynamic adjustment and faster consol-
idation of multiple orders, but come at the expense of effi-
ciency due to more frequent rescheduling. Longer intervals
(45-60 minutes) ensure more even utilization and higher av-
erage picking performance, but result in slower order con-
solidation. The 30-minute interval proves to be a sensible
compromise between stability and flexibility.

5.2.1.2 Influence of Pick Run Sizes Larger run sizes
(15-20) increase the service level by up to 5% and reduce
the number of pick runs by around 6 %. However, the pick-
ing and run times per run increase proportionally. Values
above 15 do not bring any significant additional benefits.
For this reason, run sizes of 8 (short) and 15 (long) were
selected for the main studies.

5.2.1.3 Analysis of the Zone Structure The usual zone
division is more efficient for normal order volumes, as it re-
duces walking distances and improves resource utilization.
Alternative structures (across floors or units) are slower but

offer advantages when order volumes are lower, as fewer

"Where F the error bound of the confidence interval, ¢ the t-
value from the Student’s t-distribution for the chosen confidence
level of 95 % (o = 0.05), s the standard deviation of the sample
and n the sample size.
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pick runs are required. In the model, the cross-unit variant
proved to be slightly superior, which is why it was used in
later scenarios.

5.2.2 RESULTS OF THE FIRST SIMULATION STUDY

The results of the first simulation study carried out are dis-
cussed below.

5.2.2.1 Overall Evaluation The elimination of zone
divisions significantly reduced the number of pick runs
(—12.5% to —18.1 %), but increased the average running
time per run. Route optimization alone had only a minor ef-
fect, as many small runs occur at the end of the day anyway.
Only the combination with other heuristics showed signifi-
cant improvements.

5.2.2.2 Detailed Analysis of the First Shift Hours In
the first eight shift hours, an order phase consisting of a suf-
ficient number of pending orders and items ready to pick in
the backlog, route optimization did result in a slight increase
in the number of items processed (0.7 % to 0.9 %), but the
overall effects remained minor. Only the additional heuris-
tic, which gives preference to items located close to each
other, brought about significant improvements. The picking
performance increased by 4.5 % (for pick run size 8) and
3.8 % (for pick run size 15), with walking time per run re-
duced by 7.7 % (for pick run size 8) and by 5.1 % (for pick
run size 15). This showed that proactive item selection when
creating runs is more effective than retrospective optimiza-
tion.

5.2.3 RESULTS OF THE SECOND SIMULATION STUDY

In the second simulation study, the settings from the prelim-
inary investigations and the results from the first simulation
study were implemented in the previously developed pick-
ing strategies and compared with the actual state of the pick-
ing algorithm from the reference system. The wave pick-
ing achieved a significant improvement in service level of
12.2 % (for run size 8) and 7.7 % (for run size 15) compared
to the actual algorithm, as orders are released in a way that
is better aligned with the pick-up times. At the same time,
however, the picking performance decreases by 11.9 % for
run size 8 and 10.9 % for run size 15 compared to the pick
run algorithm, as periodic release leads to fluctuating uti-
lization. With shipping-priority picking, there would be a
moderate increase in service levels of 2.8 % (for run size 8)
and 2.0 % (for run size 15), but at the same time the pick-
ing performance would increase by 1.3 % (for run size 8)
and 3.7 % (for run size 15) compared to the actual algo-
rithm. This strategy therefore proves to be more balanced,
as it takes into account both improved efficiency and on-
time delivery.
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5.3 KEY RECOMMENDATIONS

The following conclusions can now be drawn from the re-
sults. For high-order volumes, larger run sizes (approx. 15
items/pick run) should be used, as this allows for optimized
picking performance. For low-order volumes, the size of
the pick runs is less relevant, but in order to better utilize
pick resources, strict zone divisions should be eliminated
or zones should be merged. Furthermore, the results show
that a heuristic that favors nearby items reduces walking dis-
tances and significantly increases the picking performance.
Shipping-priority picking improves on-time delivery with-
out losing performance in picking and is preferable to the
wave strategy or the current state of the picking algorithm
of the reference system.

6 DISCUSSION

This work contributes to the optimization of picking pro-
cesses in luxury logistics centers and provides concrete,
practical recommendations for action. Nevertheless, there
are limitations that restrict transferability and completeness
and offer starting points for future research.

The simulation model only maps the picking process of
the system under consideration and does not take into ac-
count other areas, such as goods dispatching or goods recep-
tion. An extension could make the dependencies between
these areas more transparent and allow for more compre-
hensive optimization. In addition, human behavior remains
a key uncertainty factor: the efficiency of individual pick-
ers varies and can strongly influence the results. Disruptions
such as system failures or bottlenecks in the warehouse were
also not taken into account, although they have a real impact
on process performance.

Another aspect is the low level of automation in the
warehouse examined. While the results are relevant for
comparable luxury logistics centers, their transferability to
more highly automated systems is limited. Similarly, the op-
timizations developed are limited to simple heuristics; more
complex algorithms could achieve even better results in spe-
cialized environments.

Furthermore, the findings are tailored to the luxury seg-
ment, where service levels and product protection are par-
ticularly important. However, the basic principles, such as
order bundling, route optimization, and flexible zone adjust-
ment, are also relevant for other industries and show paral-
lels to existing studies [15, 18, 20].

Some recommendations have already been presented to
the reference center: adjustments to the picking algorithm
are to be implemented in the near future, while others, such
as the integration of cut-off times, will first be tested in pilot
trials. Thus, the work not only offers theoretical approaches
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but also provides impetus for practical improvements in lux-
ury goods logistics.

7 SUMMARY AND OUTLOOK

This work examined the picking process in a luxury lo-
gistics center and developed optimization strategies for a
largely manual environment with a simple WMS system. It
was based on an event-discrete simulation model that was
used to analyze weak points and test improvement mea-
sures. Two KPIs were used for evaluation: service level (ef-
fectiveness) and picking performance (efficiency).

The simulation results show clear potential: route op-
timization already during the creation of pick runs short-
ens runtimes and increases the picking performance by up
to 3.8 %. A flexible, cross-zone structure proves advanta-
geous for lower-order volumes, as resources are better uti-
lized. The integration of cut-off times is particularly signif-
icant: Wave picking significantly increases the service level
(by 7.7%), but at the expense of efficiency. In contrast,
shipment-priority picking combines both goals by improv-
ing the service level (2.0 %) and the picking performance
(3.7 %) at the same time. The study thus provides practical
recommendations on how luxury logistics centers can bal-
ance picking performance and service levels.

Several potential areas of future research have been
identified. On the one hand, modern optimization algo-
rithms and predictive analytics could further improve the
process, for example, through dynamic adjustments in real
time. Second, expanding the simulation model to a digital
twin would make it possible to include additional areas and
disruptive factors to map the entire process. The increased
use of automation, from robot-assisted picking to hybrid
systems, could also be investigated to test the transferabil-
ity of the strategies to more technologically advanced en-
vironments. Finally, it would be worthwhile to validate the
approaches developed in other luxury logistics centers and
also in other industries with other specific requirements in
greater depth.

Overall, the work shows that adaptive picking strate-
gies can enable significant performance improvements even
in less automated warehouses. Future research can build
on these findings to make logistics processes in the lux-
ury segment, and beyond, even more efficient and customer-
centric.
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