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Robotic compact storage and retrieval systems (RC-
S/RS) offer space-efficient storage by stacking bins

densely and using robots to retrieve them via a grid-
based system. While existing operating strategies give fix
guidelines on how to store and relocate blocking bins,
the literature lacks learning-based strategies. This work
closes that gap by applying deep reinforcement learn-
ing to optimize bin retrieval and relocation with respect
to cycle time. A Deep Q-Learning agent, trained us-
ing Double-DQN with prioritized experience replay in
a simulated RCS/RS, is evaluated across diverse scenar-
ios. Results show performance gains regarding the cy-
cle time of up to 36.98% over existing operating strate-
gies. These findings demonstrate the potential of rein-
forcement learning for relocation decisions and suggest
promising transferability to real-world systems.

[Keywords: RCS/RS, Relocation, Cycle Time, Reinforce-
ment Learning, Performance Estimation]

1 Introduction

The demand for efficient and innovative storage and
order-picking systems is rising steadily. E-commerce
revenues are projected to grow by 39% from 2023 to
2027, exceeding eight trillion USD [1]. At the same
time, consumers expect both fast and sustainable delivery,
increasing the pressure on logistics and supply chains [2].
Warehouses are a major contributor to operational costs,
particularly due to their energy consumption. In the U.S.,
warehouses accounted for 18% of all commercial floor
space and 8% of commercial energy use in 2018, with
heating and lighting being the largest contributors [3]. As
competition grows, companies are seeking ways to reduce
costs while improving efficiency. Robotic compact storage
and retrieval systems (RCS/RS), such as AutoStore, offer

promising solutions. RCS/RS use robots to retrieve bins
stacked densely in a grid, achieving high storage density
and energy efficiency. To access a target bin, robots must
relocate the bins stacked above it. Since relocation is time-
intensive, improved control strategies offer great potential
for cycle-time reduction. Cycle-time and energy efficiency
are linked to each other with the common assumption that
a low cycle-time also leads to low energy consumption.
However, the application of learning-based methods, to
control such logistical systems, remains underexplored.

RCS/RS exhibit dynamic storage configurations, a
complex and high-dimensional state representation, and
an extensive action space with numerous control options.
Learning-based methods such as Deep Q-Learning (DQL),
a technique from reinforcement learning (RL), are par-
ticularly well-suited for such environments. They can
identify complex relationships through interaction with the
system that are difficult to model explicitly. Currently, the
throughput efficiency (and the linked cycle-time efficiency)
of control strategies in RCS/RS systems remains largely
unquantified. Moreover, existing RL research in warehouse
automation has primarily focused on routing, collision
avoidance, and task assignment, while the optimization of
bin relocation has received little attention.

This paper addresses this gap by investigating whether DQL
can reduce cycle time (and therefore augment throughput)
in RCS/RS systems, particularly under varying storage
conditions, access patterns, and warehouse dimensions. To
this end, the study pursues the following main objectives:

• Develop a simulation-based model environment that
accurately replicates RCS/RS dynamics and enables
controlled experimentation.

• Implement and train a DQL agent to optimize bin
relocation decisions in a defined base scenario, with
the aim of minimizing cycle time.
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• Evaluate the generalization of the learned strategy
across alternative warehouse configurations with
varying storage densities, retrieval patterns, and sys-
tem sizes.

• Quantitatively compare the cycle time of the DQL
agent to existing operating strategies, highlighting
the improvement potential of learning-based ap-
proaches.

The overarching goal is to demonstrate the potential of
DQL for intelligent bin relocation in RCS/RS and to lay a
solid foundation for future learning-based warehouse con-
trol strategies.

2 Related Work

A systematic literature search was conducted using the Sco-
pus database (May 2025) to identify relevant work at the
intersection of automated warehouse systems and RL. The
search combined terms related to RCS/RS and AutoStore-
type systems with key RL concepts, including DQL and the
Block Relocation Problem (BRP). The objective was to cap-
ture existing research and identify gaps in applying DQL to
RCS/RS,. Relevance criteria included:

• focus on learning-based methods, particularly DQL,

• application to automated warehouse or AutoStore-
like systems,

• investigation of dynamic bin relocation or compara-
ble processes,

• provision of methodological details and validation.

Of the 33 works, most addressed path planning, routing,
or multi-robot coordination, with a few on task allocation
and battery management. Only two publications met all cri-
teria, both addressing learning-based dynamic bin reloca-
tion in RCS/RS,:
[4] propose a Q-Learning–based bin relocation approach for
a compact robotic storage system with a ceiling-mounted
rail network, aiming to minimize relocation distance. The
method uses a distance-based negative reward and a simpli-
fied state description of neighboring stacks. However, the
state space is insufficiently specified, limiting generalizabil-
ity to other layouts. Moreover, robot movement is restricted
to fixed tracks with dedicated lane-changing robots, con-
trasting with the more flexible horizontal motion in Au-
toStore, making DQL promising for the latter’s higher-
dimensional and continuous state space.
[5] review the Block Relocation Problem (BRP) in
AutoStore-like systems, presenting exact, heuristic, and ma-
chine learning–based approaches (Table 1). They emphasize
that efficient container positioning is critical for overall per-

formance and identify relocation optimization as a promis-
ing application area for learning-based methods.

From the relocation-focused studies:

• [6] address the Container Pre-Marshalling Problem
(CPMP) with Deep Learning Heuristic Tree Search,
trained on near-optimal solutions. While conceptu-
ally related, CPMP assumes deterministic, known
container moves, unlike the stochastic, continuous
operations in AutoStore.

• [7] use ML to improve upper bound estimation for
classical search algorithms but do not apply RL di-
rectly.

• [8] optimize vehicle relocation in urban mobility
systems, which differs structurally from warehouse
automation despite using RL.

Few studies target learning-based bin relocation for RC-
S/RS. Existing works either lack generalization ([4]), focus
on surveys without implementation ([5]), or address related
but structurally different problems. This work addresses
this gap by developing and evaluating a Double Deep Q-
Network (DDQN) agent for cycle time-efficient bin reloca-
tion in RCS/RS, assessing its generalization to varying stor-
age densities, access patterns, and system sizes.

3 Theoretical Background

This chapter provides the theoretical background neces-
sary for understanding the paper. It introduces RCS/RSs
with AutoStore, founded in 1996 and based on the goods-
to-person principle, serving as a representative example.
Autonomous robots retrieve bins from a densely packed
grid and deliver them directly to picking stations. The sys-
tem has been adopted by major companies, such as Puma,
which operates a 60,400 m2 AutoStore warehouse in Indi-
ana [13]. In contrast to conventional shelf-based systems,
AutoStore stores bins vertically stacked without gaps, max-
imizing storage density. Robots equipped with vertical lift
arms access bins from above, and to retrieve deeper bins, all
bins above must first be temporarily relocated [14].

Understanding the structure and operation of RCS/RS,
as well as its abstraction into a simulation model, is essential
for developing and evaluating advanced control strategies.
To this end, Section 3.1 describes the core components of
RCS/RS and explains how they are represented in the simu-
lation model. Section 3.2 outlines the system’s functionality
and control strategies, followed by Section 3.3, which intro-
duces the heuristic baselines implemented for comparison.
Section 3.4 details the relocation logic governing bin move-
ments in the absence of learning-based control. Finally, Sec-
tion 3.5 presents the verification and validation of the sim-

© 2025 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 2



DOI: 10.2195/lj proc mitterer en 2025 01

Table 1: ML-based approaches for relocation and routing in RCS/RS, adapted from [5].

Reference Relocation Routing Algorithm Advantage

[6] ✓ Deep Learning Heuristic Tree Search Reduces relocations significantly.
[7] ✓ ML-driven Upper Bounds Improves node selection, reduces relocations.
[8] ✓ Deep Deterministic Policy Gradient Fewer relocations, reduced congestion.
[9] ✓ Deep Reinforcement Learning Framework Reduces travel distance.

[10] ✓ Adaptive Large Neighborhood Search Shorter travel distance, improved robustness.
[11] ✓ BERT-based Deep RL Faster, more accurate pathfinding, reduced travel.
[12] ✓ Multi-Armed Bandits Algorithm Avoids path conflicts, reduces travel time.

ulation model, ensuring its reliability as the foundation for
subsequent experiments.

3.1 Core Components of RCS/RS

Figure 1 shows the schematic structure of an RCS/RS ware-
house with 125 storage locations, one robot and one pick-
ing station, also referred to as an I/O point (input/output). In
practice, however, RCS/RSs usually have significantly more
robots and multiple picking stations.

3

4

2
2
2

2

1

Figure 1: Schematic representation of an RCS/RS
consisting of the Grid (1), Bins (2), Robots (3), and I/O
points (4). Source: own visualisation from the simulation
environment.

RCS/RS consists of five main components, which are
numbered in Figure 1. Unless otherwise indicated, the de-
scriptions of the system components are based on informa-
tion from the official AutoStore website [13]. In our work,
these components were abstracted into a discrete-event sim-
ulation model, focusing on processes relevant to bin reloca-
tion. The implementation of each component is as follows:

• 1 Grid: Represented as a three-dimensional array
of stacks, each position holding a vertical sequence
of bins. Each bin in a stack is characterized by an
ID, height, and ABC category. The grid size in our
model varies from a 5×5×5 system to a 20×20×10
with a filling level from 60% to 93.6%.

• 2 Bins: Modeled as individual items, each contain-
ing one unique SKU. No partial picks or replenish-

ments are considered. Retrieval probabilities follow
different distributions.

• 3 Robot: A single robot moves along the top layer
of the grid in the X- and Y-directions using Manhat-
tan routing. Both horizontal and vertical motions are
time-based with acceleration and lifting dynamics:
horizontal speed 3.1m/s, acceleration 0.8m/s2, and
lift/lower speed 1.6m/s. The robot executes tasks
autonomously without downtime or charging cycles.

• 4 I/O Port: Implemented as a single, bottom-
centered input/output location for all order process-
ing operations. Each order is assigned to this port.

• 5 Controller and WES: Modeled as a simplified
decision layer that assigns retrieval tasks, manages
bin locations, and schedules robot actions. Order
generation is continuous with a rolling horizon of
ten known upcoming requests.

In summary, the simulation cycle abstracts RCS/RS op-
erations into a sequence of order arrival, bin retrieval, and
temporary relocations. This representation captures the dy-
namic interaction of the core components while remaining
sufficiently tractable for analyzing alternative control strate-
gies.

3.2 Functionality and Control Strategies of RCS/RS

The following description of RCS/RS’s operational logic is
mainly based on Meller [14]. The system coordinates all
components to efficiently handle storage and retrieval re-
quests. Upon order arrival, the controller assigns one or
more robots to retrieve the target bin. If the bin is buried
within a stack, all bins above it must first be removed
and temporarily stored in predefined free locations called
”holes.” Once accessible, the target bin is transferred to an
intermediate buffer and subsequently delivered to an I/O
port. The previously removed bins are returned to their orig-
inal stack in reverse order, shifted one level lower, which
creates a new hole at the top. Transport to the I/O port is
often performed by a different robot to increase throughput.
After picking, bins are not returned to their original location
but are instead stored in any available top-level hole. This
mechanism results in natural slotting, where frequently ac-
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cessed bins remain closer to the surface while less fre-
quently used bins drift deeper into the grid. Inventory man-
agement is handled through Stock Keeping Units (SKUs),
typically assigned one per bin. A Warehouse Execution Sys-
tem (WES) oversees SKU assignment, ensures bin avail-
ability for order fulfillment, and communicates with the
RCS/RS controller. AutoStore in particular also supports
dual-command cycles, where a robot combines retrieval and
storage within a single trip to minimize idle travel time
[15]. While basic processes such as bin relocation are docu-
mented in the literature, most decision-making rules remain
proprietary. To date, no evidence exists of RL in the core
system, although AI-driven add-ons like the CarouselAI™
station have recently been introduced.

Within the simulation model, these operational rules are
simplified to emphasize bin handling and relocation. Orders
arrive continuously at a single I/O port, and robot actions are
coordinated through either heuristic or learning-based deci-
sion policies. The rule-based heuristics serve as the baseline
against which the RL agent can be systematically evaluated.

3.3 Reference Operating Strategies

To establish meaningful baselines for later evaluation, two
rule-based operating strategies are implemented in the sim-
ulation:

• ASM : Following [14], bins are randomly stored in
upper grid layers, prioritizing stacks with the lowest
fill height.

• ASNN : Nearest Neighbor (NN) strategy, placing
bins close (in travel time) to the next retrieval target,
in line with the RCS/RS-NN approach from [16].

3.4 Relocation Logic

Bin relocations, including temporary placement of the tar-
get bin, follow the NN principle, whereby stacks are chosen
to minimize the expected travel time from the relocation site
to the next retrieval task. This rule-based relocation mech-
anism represents the operational baseline against which the
performance of the RL strategy will be benchmarked.

3.5 Simulation Model Verification and Validation

For this work, no real RCS/RS data was available. The
simulation model was therefore verified and validated us-
ing a combination of established methods as proposed by
[17, S. 95ff]. The ASNN strategy was used as reference,
since both baseline strategies share the same model. Veri-
fication confirmed structural correctness through animation
runs, fixed-value tests, and boundary value checks. For ex-
treme fill levels, results behaved as expected: at 0.8% fill
level, the average cycle time was 10.91 s, while at the max-
imum valid 93.6% fill level, it increased to 19.64 s. Mon-
itoring over 1,000 dual-command cycles revealed an ini-

tial transient phase of about 350 cycles, after which per-
formance stabilized. A conservative warm-up of 1,000 cy-
cles was applied in all experiments. To assess robustness, 30
replications were performed for both identical and random
initial states. Mean cycle times were 17.29 s and 17.88 s,
respectively, with overlapping 95% confidence intervals in
both cases. Minor significant deviations in a few replications
indicate some sensitivity to initial bin layouts, but overall
results were consistent and stable. The model reliably re-
produces the expected operational behavior and provides a
sound basis for the subsequent evaluation of the DDQN ap-
proach.

4 Method

This chapter describes the methodological framework for
developing and evaluating a DQL approach in the context
of an RCS/RS. The approach builds directly on the assump-
tions, model simplifications, and heuristic strategies intro-
duced in Section 3, using the validated simulation environ-
ment as the basis for training and testing RL agents.

The chapter is structured as follows. Section 4.1 formal-
izes the RCS/RS control task as a RL problem by defining
the agent, environment, state space, action space, and re-
ward function. Section 4.2 introduces the proposed Double
Deep Q-Network (ASDDQN ), which extends the classical
DQL framework with stability-enhancing mechanisms such
as prioritized experience replay. Section 4.3 discusses the
selection of suitable hyperparameters and the network ar-
chitecture.

4.1 Reinforcement Learning Problem Formulation

This section formalizes the RCS/RS as a RL problem for
developing a DQL approach aimed at reducing energy con-
sumption by minimizing average dual command cycle time.
The agent, environment, state space, action space, and re-
ward function are defined, enabling the agent to learn effec-
tive bin relocation strategies through simulation.

4.1.1 Agent and Environment

RL is a machine learning paradigm in which an agent learns
to make sequential decisions by interacting with an environ-
ment to maximize cumulative reward over time [18]. In our
formulation, the agent is the robot responsible for storage
and retrieval, while the environment is the validated simu-
lation model (see Section 3).

In classical Q-Learning, the goal is to approximate the
optimal action-value function q∗(s, a), which represents the
expected return of taking action a in state s and following
the optimal policy thereafter. However, due to the very large
state space of RCS/RS (see Section 4.1.2), a tabular repre-
sentation is infeasible. Instead, DQL [19] employs a neu-
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ral network Q(s, a; θ) to approximate Q-values, enabling
generalization across high-dimensional states. To stabilize
training, two standard techniques are employed:

• Experience Replay: Transitions are stored in a re-
play buffer and sampled randomly to reduce corre-
lation in updates.

• Target Network: A periodically updated target net-
work is used to compute training targets, preventing
feedback instabilities.

The agent interacts with the environment by observing
its current state, selecting actions, and receiving a reward
signal that reflects efficiency. Storage follows the ASNN

heuristic for non-agent-driven placements, while the DQL
agent specifically learns strategies for relocating blocking
bins.

4.1.2 State Space and Features

The state space S comprises all possible warehouse states.
Each state s ∈ S is represented numerically to capture
features relevant for decision-making. Features are divided
into:

• Stack-unspecific (SU): Global features describing
the robot and the currently handled bin.

• Stack-specific (SS): Local features for each stack,
e.g., number of free slots.

Most features are normalized to [0, 1], ensuring scalabil-
ity across different system sizes. The SU set includes rela-
tive positions of the target bin and robot, distances to key
points (e.g., I/O), retrieval probabilities, weighted height in-
dices, binary accessibility indicators, and priority values.
The SS set includes relative stack distances, heights, space
availability, retrieval-demand features, identifiers for stack
roles, waiting-bin indicators, and neighbor information.

For a system of size L×B ×H with K bin categories,
the estimated state space size grows exponentially (e.g.,
∼ 7.9 · 1025 states for L = B = H = 5 and K = 3), which
makes tabular Q-Learning impractical. Neural approxima-
tion of the Q-function via DQL is therefore necessary.

4.1.3 Actions and Action Space

The action space A consists of all placement decisions
available to the agent. Actions are defined at the level of
selecting a destination stack for a bin, not low-level robot
movements. The agent makes decisions only when block-
ing bins must be relocated or when processing previously
displaced bins.

Two modeling options exist: restrict actions to valid
moves or allow invalid actions and penalize them. This work
adopts the latter, letting the agent learn to avoid invalid de-

cisions. The number of possible actions equals the number
of stacks (25 for a 5×5 grid, 100 for a 10×10 grid). Invalid
actions include placing bins on full stacks, moving already-
blocked bins, or returning bins to temporary stacks. They
are not executed but incur a fixed negative reward, ensuring
that the replay buffer contains examples of both good and
bad decisions.

4.1.4 Reward Function

The RL objective is to minimize energy consumption by re-
ducing dual-command cycle time. Each agent action causes
physical movement, with costs for travel time, starts, and
direction changes. While short moves may appear efficient,
they can create future blockages. The reward function there-
fore penalizes each relocation proportionally to its time
cost:

rvalid = −tum, r′valid = −
(
tum +

tzwl

nwl

)
where tum is relocation time, tzwl is the waiting-list storage
time, and nwl the number of bins in the list.

Invalid actions are penalized by a constant rinvalid =
−10, exceeding the worst-case relocation time (t̃max

um ≈
6.59 s in the base scenario), thereby discouraging infeasible
choices.

4.1.5 Episode Definition

Episode length affects whether the agent optimizes short- or
long-term performance. To encourage strategies that reduce
cycle time over many retrievals rather than a single reloca-
tion, episodes are defined as 5,000 cycles with continuous
value updates during training.

4.2 Deep Q-Learning Approach

The RCS/RS system is a dynamic, high-dimensional con-
trol problem, where bin relocation decisions have both im-
mediate and long-term consequences. Classical rule-based
heuristics (ASM , ASNN ) capture only static placement
logic. By contrast, DQL enables adaptive, policy-based con-
trol through simulation-based interaction, learning strate-
gies that balance immediate relocation efficiency with long-
term benefits such as energy and cycle time reduction and
improved bin accessibility. Moreover, extensions like Dou-
ble DQN [20] mitigate overestimation bias, further improv-
ing stability. These characteristics make DQL a particularly
suitable approach for optimizing RCS/RS control strategies.
Building on the modeled RL environment, a (DDQN) [20] is
therefore used to approximate Q-values, following the DQN
guidelines in [19]. Stability is enhanced with prioritized ex-
perience replay [21], modified to prioritize transitions by
low sampling frequency rather than TD-error, ensuring bal-
anced sampling and reducing the influence of stale experi-
ences.
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The network employs fully connected shared layers to
generalize across warehouses of different sizes while limit-
ing parameters. For each stack, stack-unspecific and stack-
specific features (see Section 4.1.2) are concatenated into a
single input vector, enabling the model to learn generaliz-
able patterns (e.g., placing a bin on a full stack is always
invalid).

Key training components:

• Dropout and L2 regularization to prevent overfit-
ting (values selected during hyperparameter tuning).

• Activation functions: evaluated among swish, tanh,
leaky ReLU, and ReLU.

• Optimization: Adam optimizer with gradient clip-
ping (1.0) to prevent unstable updates.

• Loss function: modified Huber loss, masking all Q-
values except the executed action to update only rel-
evant weights.

• Epoch-like training: training frequency increases
with episode progress (1/3/10 updates per cycle for
early/mid/late phases), reusing the same mini-batch
within a cycle.

• Replay buffer: minimum of 2,000 stored experi-
ences before updates; prioritized sampling as de-
scribed above.

• Network updates: online network updated every 5
cycles; target network every 20 cycles.

4.3 Hyperparameter & Network Architecture Selection

Hyperparameters were tuned in the base scenario using Op-
tuna [22], with 30 trials evaluated on average dual command
cycle time and number of invalid actions over 1,000 evalu-
ation cycles. The found configuration is displayed in Table
2.

Table 2: Performant hyperparameter configuration found
with Optuna [22].

Hyperparameter Value
Learning rate 0.005993
Training duration* 10 000
Discount factor γ 0.9687
Replay buffer size 30 000
Batch size 64
Epsilon decay 0.985
Network architecture [64, 32]
Activation function tanh
Dropout rate 0.030
L2 regularization λ 5× 10−6

* Measured in number of dual com-
mand cycles.

5 Experiments & Results

This section presents the results of the computational ex-
periments, evaluating the trained DQL agent. The DDQN
agent (ASDDQN ) is compared separately with two RCS/RS
reference strategies from Section 3.3: the standard heuristic
ASM by [14] and a nearest-neighbor variant ASNN .

5.1 Definition and Selection of KPIs for Efficiency Measurement

To evaluate efficiency in RCS/RS, this work focuses on a
small set of key performance indicators (KPIs). The two
central measures are the average dual-command cycle time,
capturing the total time for storage and retrieval including
relocations. As a complementary measure, the direct access
rate indicates the proportion of retrievals that can be com-
pleted without relocations. Together, these KPIs provide a
consistent basis for comparing alternative relocation strate-
gies both at system level and across different bin categories.

5.2 Objective and Setup of Computational Experiments

The experiments aim to evaluate whether the decision-
making strategy learned by the DDQN agent outperforms
established heuristic approaches in terms of cycle time and
energy consumption under varying system configurations.
The heuristic baselines follow RCS/RS control logic from
the literature: blocking bins are relocated to the nearest
available location, later returned to their original stack when
possible, while target bins are temporarily stored before
transport to the I/O point.

A further objective is to assess the generalization ca-
pability of an agent trained in a 5×5×5 grid environment
when applied to different operating conditions, including
larger storage dimensions, varying fill levels, and altered re-
trieval probabilities for ABC-classified bins.

Each method was evaluated in 30 replications with iden-
tical initial warehouse states to eliminate random start ef-
fects; robustness to varying states was tested in an addi-
tional 30 replications. A replication comprised 2,000 dual-
command cycles (1,000 warm-up and 1,000 for analysis),
with fixed parameters and layout but varying random seeds
for order generation. For ASM and ASNN , relocation rules
were fixed (“Return” = 1, “Repeated Relocation” = 0), while
in ASDDQN relocation behavior was learned through re-
wards. Energy consumption, directly linked to cycle time,
is reported separately. Global KPIs were compared using
Welch’s t-test (α = 0.05), while category-specific KPIs
were analyzed descriptively.

The experimental procedure consisted of:

1. Baseline Test: Evaluation in the original training
environment (5×5×5 grid, 125 positions, 90 % fill
rate, ABC retrieval probabilities) against the heuris-
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tic baselines. Performance is measured using the
KPIs defined in Section 5.1.

2. Generalization Tests: Application of the trained
agent to environments deviating from the training
setup:

• Fill rate variation: 60 % and 93.6 % (maxi-
mum feasible for 5×5×5).

• Retrieval pattern variation:
– Equal retrieval probability and stock

share across all categories.

– High retrieval probability concen-
trated in a rarely stocked category.

• System size variation:
– 10×10×10 grid (1 000 positions,

6.49 m × 4.49 m × 2.2 m).

– 20×20×10 grid (4 000 positions,
12.98 m × 8.98 m × 2.2 m).

If the agent’s performance under altered system condi-
tions falls significantly below that of the heuristic baselines
(ASNN or ASM ), a transfer learning approach is applied. In
this case, the pre-trained network weights serve as initializa-
tion for a short adaptation phase, during which the agent is
fine-tuned to the new environment.

5.3 Results

Table 3 provides a consolidated overview of the main sce-
narios, reporting global KPIs for both operating strategies
and the DDQN agent across baseline, fill-level, retrieval-
pattern and system-size variations accompanied with a fine-
tuning of the agent. The table highlights consistent effi-
ciency gains of ASDDQN in terms of cycle time, typically
accompanied by reduced direct access rates. The baseline,
fill rate variations and retrieval pattern variations show the
following results:

• Baseline: The ASDDQN yields the overall lowest
cycle times, but the direct access is also lower. This
means that the driving distance for the robots is
smaller, but this strategy produces lower number of
direct accesses compares compared to the ASM and
ASNN operating strategies. Category-wise, A-items
show lower direct access and higher blocking fre-
quency, while B/C-items achieve large cycle-time
reduction (up to –42%); trends are robust across ini-
tial states.

• Fill rates: ASDDQN reduces cycle time compared
to ASM and ASNN for both fill rate variations.
However, the direct access is also lower compared
to both operating strategies.

• Retrieval pattern: ASDDQN reduces the cycle time
compared to the ASM and ASNN for both variation
cases. The direct access is either higher (equal re-
trieval probabilities) or lower (high retrieval prob-
abilities) for both ASM and ASNN compared with
the ASDDQN .

For the variation of system size and transfer learning, we
find that direct transfer of the 5×5×5 agent to larger grids
did not surpass ASNN in efficiency. We therefore applied
fine-tuning in the target environment with (i) initialization
from existing weights, (ii) rescaled reward and stronger
invalid-action penalties, and (iii) light hyperparameter
retuning within a short budget (≤5,000 cycles).

Table 4 shows that fine tuning leads to significant lower
cycle times compared to all other operating strategies. This
includes the agent trained with the baseline system without
fine tuning.

Table 4: Compact comparison of fine-tuned (FT) vs.
non-finetuned and heuristics.

Scenario Comparison Diff. %
Cycle Time

Diff. %
Direct Access

10×10×10
FT vs. non-FT –2.30% –13.12%
FT vs. ASM –3.64% –38.28%
FT vs. ASNN –3.00% –37.93%

20×20×10
FT vs. non-FT –5.93% –14.10%
FT vs. ASM –6.93% –36.10%
FT vs. ASNN –1.25% –35.10%

6 Limitations & Conclusion

6.1 Limitations

This study is subject to several limitations. First, the simula-
tion relies on multiple modeling assumptions due to the lack
of publicly available details on RCS/RS and particularly on
AutoStore’s internal control logic and real operational data.
Comparisons with reference strategies (ASM , ASNN ) are
based on heuristics from literature, which may not fully re-
flect actual system behavior. The model includes simpli-
fications in robot movement (e.g., no braking phase, con-
stant lifting speed), a single-robot, single I/O-point config-
uration, and excludes factors such as load-dependent speed
use or multi-robot coordination. Second, the work focuses
solely on a DDQN-based relocation policy without compar-
ison to other RL approaches. Training was performed on a
fixed initial warehouse state without testing alternative ini-
tializations. The warm-up phase for ASDDQN was aligned
with the heuristics without adjustment to the agent’s learn-
ing process, and the reward function was only empirically
tuned.
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Table 3: Global KPIs across baseline, fill-level, and retrieval-pattern scenarios (mean over 30 replications and confidence
intervals)

Scenario
ASM ASNN ASDDQN

Cycle [s] Direct Cycle [s] Direct Cycle [s] Direct
Baseline (90% fill, ABC) 17.37 [17.19; 17.55] 0.53 [0.52; 0.53] 17.25 [17.08; 17.43] 0.55 [0.54; 0.55] 14.40 [14.27; 14.52] 0.42 [0.41; 0.42]
Low fill (60%) 15.02 [14.92; 15.12] 0.61 [0.60; 0.61] 14.27 [14.18; 14.37] 0.60 [0.59; 0.60] 11.75 [11.68; 11.83] 0.53 [0.52; 0.53]
High fill (93.6%) 19.19 [19.00; 19.39] 0.51 [0.50; 0.51] 19.33 [19.08; 19.58] 0.53 [0.52; 0.54] 16.15 [16.00; 16.30] 0.38 [0.37; 0.38]
Equal retrieval prob. 26.75 [26.59; 26.91] 0.21 [0.20; 0.21] 27.76 [27.57; 27.95] 0.22 [0.22; 0.23] 17.50 [17.40; 17.59] 0.23 [0.22; 0.23]
High retrieval prob. 16.02 [15.91; 16.14] 0.66 [0.65; 0.67] 15.46 [15.31; 15.61] 0.69 [0.68; 0.69] 13.22 [13.13; 13.31] 0.54 [0.54; 0.55]

Finally, the absence of external validation with real-
world data limits the generalizability of the results. While
the DDQN agent achieved significant energy savings in sim-
ulated scenarios, transferring these findings to operational
RCS/RS requires further research under realistic multi-
robot and variable operating conditions.

6.2 Conclusion

This work explored the use of a DDQN-based agent for
container relocation in RCS/RS to reduce cycle time (and
consequently energy consumption) for dual command cy-
cles compared to rule-based heuristics. The agent achieved
significant savings, with up to 36.98% reduction in scenar-
ios with uniform retrieval patterns and an average of 20.89%
in the 5×5×5-grid training environment, while maintaining
robustness under varying fill levels and retrieval distribu-
tions. Even in larger warehouse configurations, fine-tuning
preserved notable efficiency gains, though at lower percent-
ages. The strategy avoided time-intensive returns, trading
off direct access rates for overall time efficiency, highlight-
ing the potential of learning-based approaches in realistic
settings where classical ABC-based heuristics are less ef-
fective.

Future research should address current limitations by ex-
tending to multi-robot coordination, scaling to larger sys-
tems with adapted reward functions, and comparing with
alternative RL algorithms such as PPO. External validation
with real operational data is crucial to assess practical ap-
plicability. Explainable RL techniques could increase trans-
parency and acceptance, while systematic tuning of reward
functions and simplified state representations may improve
efficiency and reduce computational demands. These direc-
tions offer a broad scope for advancing intelligent control in
RCS/RS.
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