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Acquiring rich object-level information, including
shape, texture, and geometry, serves as a funda-
mental building block across multiple domains. In this
context, few-shot reconstruction has become a promi-
nent research field due to the ability to achieve 3D re-
construction from a limited set of input images. By lever-
aging prior knowledge encoded within a trained neural
network, these methods can recover unseen features be-
yond the information obtained from the recorded sen-
sor data. However, current approaches either model the
entire environment without emphasizing specific regions
of interest or restrict the process to the target object by
completley neglecting the surrounding context in a pre-
possessing step. One potential approach is to apply ob-
ject masking in the images and then directly map seman-
tic information from 2D to 3D through deep learning.
Nevertheless, this task reflecs highly non-linear proper-
ties, and integrating semantic cues remains a significant
challenge. In this work-in-progress paper, we explore a
pipeline for semantically aware few-shot 3D reconstruc-
tion on real-world data.

[Keywords: 3D reconstruction, semantic awareness, deep
learning, occlusion handling, scene understanding|

1 Introduction

A central, cross-domain foundational problem lies in the
reconstruction of high-fidelity 3D geometries from real-
world scenes. Recent advances in radiance fields [1], [2]]
have significantly improved novel view synthesis (NVS),
enabling photorealistic object renderings from multiview
angles. By encoding structural, morphological, and mate-
rial characteristics, 3D modeled objects incorporate a more
information-dense understanding of the environment, sur-
passing the limitations of 2D imagery. Beyond geometric
reconstruction, the optimization of radiance fields supports
the utilization of sparse image sets by inferring missing con-
tent through learned priors. One of the key mechanisms un-
derlying this process is the differentiable rendering formula-
tion, which implements gradient-based optimization and en-
ables the integration into deep learning pipelines. Advanced
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reconstruction techniques provide accurate localization [3],
support real-time decision-making [4], and enhance com-
prehensive scene understanding [S]], all of which are essen-
tial for automation in logistics. Prior knowledge of com-
plete 3D object geometry allows autonomous systems to in-
fer occluded structure and plan collision-free trajectories.
This is particularly critical in autonomous driving, where
access to complete object shapes enhances path planning,
allowing the vehicle to predict object boundaries and safely
maneuver around them. Similarly, in robotic manipulation,
detailed object geometry informs pose and contact estima-
tion, which facilitates reliable grasping and efficient product
placement in confined storage spaces.

Although complex scenes can be reconstructed with
high realism, the process is typically computationally ex-
pensive or demands large-scale image datasets. As a novel
approach, feedforward neural networks (FNN) have been
used to regress complete 3D structures during training and
reconstruct objects from significantly fewer input images
[6l [7, [8]]. However, previous works are limited by global
scene reconstruction [7, |9], the use of generative Al [10],
and object-centric training pipelines where the background
of the data has already been removed as a prepossessing step
16} 8]

In this work-in-progress paper, a conceptual framework
is introduced that leverages deep learning to reconstruct the
complete 3D objects from a limited set of target images.
A key hypothesis is that a computational model should be
able to encode semantic information and exploit learned
priors to infer geometric properties even from a single
viewpoint. In line with this formulation, the following
research question is defined as (RQ1):

To what degree can complete and detailed 3D scenes be
reconstructed from a limited set of 2D target images?

To mitigate the complexity during initial experiments,
the chosen object should possess a well-defined and
standardized structure. Since deep learning can capture the
semantic features of objects from training data, models can
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generalize beyond previously seen instances. To ensure that
this generalization is meaningful and reliable, a validation
pipeline must be carefully designed to reflect the diversity
and complexity of real-world scenes. Therefore, a follow-up
research question is defined as (RQ2):

Can models trained on a specific object generalize
to reconstructing similar objects ?

Object reconstruction from a limited set of input views
is inherently difficult, as the geometry can only be derived
from the available structural cues. Information outside of
the observed image regions remains inaccessible. This
results in an underconstrained problem and introduces
ambiguity in recovering the complete 3D structure under
occlusion. Furthermore, to make the framework prac-
tically applicable, the object must be reconstructed in
their natural environment. In a deep learning pipeline, the
coupling between object and background increases the
risk of overfitting to irrelevant background information,
potentially leading the reconstruction process to hallucinate
non-existent structures. Consequently, the focus should be
placed on the target objects, motivating the final research
question. (RQ3):

What strategies enable semantically-aware recon-
struction of objects, while minimizing interference from
the surrounding background?

The remaining paper is structured as follows: In Sec-
tion |2} the current state of the art is reviewed, focusing on
existing approaches to deep learning—based 3D reconstruc-
tion and optimization strategies in the context of few-shot
targets. Section[3]details the training and validation pipeline,
together with the corresponding network architecture. In-
sights from the literature review and the proposed network
structure establish the foundation to address the first re-
search question (RQ1). The validation experiments with
different input images provide evidence and methodologi-
cal guidance toward resolving (RQ2). Given that extracting
robust semantic features remains the most challenging as-
pect of this work, (RQ3) will be addressed progressively
across multiple series of future studies. The present contri-
bution lies in identifying the principal difficulties, outlining
feasible solution strategies, and setting the stage for further
investigation. Finally, Section ] summarizes the key find-
ings and discusses directions for future research.

2 Related Work

Radiance Field 3D Reconstruction. The field of 3D
reconstruction has progressed rapidly, driven by hardware
developments increasing the accessibility of LiDAR- and
camera-based depth approaches. In contrast to manual
modeling, which uses computer-aided design (CAD),
3D reconstruction is induced from sensor-acquired point
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clouds, images and other spatial input data [11]. Al-
though laser scanning sensors can acquire millions of
high-precision points, they perform poorly for transparent
or reflective surfaces and often demand costly equipment
compared to RGB-cameras. In particular, recent advances
in neural rendering have transformed the field of 3D re-
construction by allowing photometric-loss backpropagation
through differentiable renderers [7]. One widely used
approach is NeRF [2], which represents a scene as a radi-
ance field that maps a 3D location and viewing direction
to color and density. These inputs are generated from
known camera intrinsic and extrinsic parameters and are
processed by a multilayer perceptron (MLP) to implicitly
encode the volumetric structure of the scene. However,
NeRF-based implicit representations introduce significant
computational overhead, as rendering involves expensive
per-pixel volumetric sampling [6} |8, [I12]. As a real-time
capable alternative, 3D Gaussian Splatting (3DGS) was
proposed in [1]]. The algorithm takes a sparse point cloud
as input and represents the scene with 3D Gaussians, each
defined by a mean and covariance capturing anisotropic
shape. These Gaussians are rendered on the image plane
via a customized rasterization technique, which avoids the
costly volumetric sampling of NeRF. While vanilla 3DGS
requires multiple input views, deep learning priors can infer
occluded geometry from limited perspectives by exploiting
structural regularities.

Prior-Guided 3D Reconstruction. Inferring object
geometries from few-view reconstruction is inherently
ill-posed, as the sparsity of the captured images provides
insufficient information for precise and unambiguous scene
representation. Neural networks mitigate this limitation by
enabling the direct generation of 3D points from training
images while generalizing across a wide variety of objects

['71].

Since NeRF represents scenes as an implicit function
through an MLP, the method provides a flexible frame-
work to incorporate learned priors with additional inputs.
As one of the earliest approaches, pixelNeRF [13]] intro-
duced an FNN that conditions NeRF on image features
extracted from a convolutional neural network (CNN) en-
coder. By training across diverse data, a transferable prior is
learned, enabling generalization to previously unseen but re-
lated scenes without per-scene optimization. Further works
advanced feed-forward NeRF architectures by leveraging
pixel-aligned features [13| [14} (15} 16| [17], and later in-
troduced transformer-based representations that employ at-
tention mechanism to aggregate information over multiple
viewpoints [18}[19].

Due to the differentiable formulation, 3DGS uses a pho-
tometric loss to align projected 3D Gaussian primitives with
target images, strongly encouraging the integration of deep
learning methods. PixelSplat [7]] outlines the fundamental
difficulty of optimizing Gaussian positions with gradient
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Figure 1: Workflow of the few-shot 3D reconstruction framework.

descent, which is a highly non-convex problem. Poor
initialization or misleading gradients caused by occlusions
can easily trap optimization in local minima. To address
this, PixelSplat employs a feed-forward architecture that
predicts a probability distribution over Gaussian means,
enabling sampling to adaptively adjust the positions.
Subsequent methods have increasingly adopted 3DGS in
conjunction with feedforward reconstruction, extending the
application from large-scale scene optimization [3| 18, 9] to
single-object reconstruction [6} [10, [12]]. The highlighted
techniques consistently demonstrate real-time rendering
performance exceeding 35 FPS. Although, recent few-shot
Gaussian splatting methods can reconstruct single objects,
they do not inherently address semantic object focus, since
their training datasets typically consist of already centered
or background-free objects.

Semantically-Aware 3D Reconstruction. Integrating
deep learning into 3DGS not only enables the prediction of
Gaussian positions, but also allows for the incorporation of
semantic object information. Such semantic cues can be ex-
plicitly introduced through the use of segmentation models
to map 2D masks into 3D scenes [20, 21} 22]. Although any
segmentation model can be integrated, recent approaches
highlight the advantages of the Segment Anything Model
(SAM) [23]], which offers strong zero-shot generalization
and reliable mask predictions across a wide range of
different object categories. Alternatively, few-shot FNN
architectures demonstrate strong generalization capabilities
under extremely sparse input [6] [7], indicating an implicit
learning ability that allows the network to semantically
infer and complete object representations.

From the literature review, it can be inferred that few-
shot reconstruction methods already exist which are capa-
ble of detecting objects in real time, providing an initial
answer to (RQ1). However, these approaches are typically
limited to synthetic datasets or on background-removed ob-
jects. Moreover, current methods can lift 2D segmentations
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into 3D, which is particularly applicable in multi-view sce-
narios. Nevertheless, the integration of FNNs substantially
increases the overall complexity to include semantic aware-
ness in the mapping process. Consequently, (RQ2) repre-
sents a novel and meaningful contribution when explored in
conjunction with few-shot reconstruction.

3 Method

The conceptual workflow of the proposed framework is il-
lustrated in Figure [1| The process starts with the collection
of RGB image data from real-world objects. During train-
ing, multiple views of each object are captured to ensure
sufficient geometric and appearance coverage. In contrast,
at inference time, the model is expected to generalize from
limited observations. Despite recent advances in accelera-
tion, NeRF-based methods remain computationally expen-
sive due to the need for dense point sampling across the en-
tire scene space [12]]. To achieve a better trade-off between
efficiency and reconstruction fidelity 3DGS is used. How-
ever, this approach requires additional supervisory signals
in the form of a sparse or dense depth map and positional in-
formation. To ensure object-centric reconstruction, a seman-
tic extraction stage is employed, which leverages guidance
to distinguish the target object from the background and
suppress irrelevant scene content. The resulting 3D models
obtained from the few-shot reconstruction are evaluated by
comparison against either high-fidelity 3D scans or objects
generated from multi-view input data. In cases where the
reconstructed models exhibit significant artifacts or devia-
tions from the reference, additional data must be collected
to improve the quality.

3.1 Camera Odometry

Training Gaussian splatting on real-world data requires
multiple images of the object captured from different view-
points, together with accurate information about the relative
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Figure 2: Estimation of depth and camera positions from
multi-view RGB inputs, providing initialization for the 3D
reconstruction framework

position and orientation of the camera. Knowledge of the
camera pose enables self-supervised training, as Gaussian
splats can be projected into the corresponding 2D image
plane. This projection allows the captured images to serve
as ground-truth supervision for optimizing the 3D represen-
tation. High-quality reconstructions further depend on pre-
cise depth estimates and accurate camera poses. While ex-
ternal sensors can provide such measurements, they often
suffer from sparsity, limited accuracy, high cost, and syn-
chronization issues. In contrast, computer vision methods
can directly infer depth and camera motion from the im-
ages, removing the need for additional hardware or sensor
fusion.

Visual odometry estimates the translational and rota-
tional motion of the camera between consecutive frames,
enabling reconstruction of the complete camera trajectory.
Although generally precise, it is a dead-reckoning approach,
and cumulative drift can introduce substantial errors over
long sequences. This limitation is negligible for short tra-
jectories required by the proposed framework. Benchmark
datasets such as KITTI [24, 25]] further show that state-
of-the-art depth prediction is dominated by deep neural
network—based methods. Despite these advances, existing
methods are not universally suitable for the proposed frame-
work. Supervised methods cannot be assumed to generalize
reliably to newly collected data of unseen objects and con-
structing a new labeled dataset lies beyond the scope of this
work. Monocular methods can produce accurate relative es-
timates but inherently suffer from scale ambiguity, necessi-
tating external reference measurements. A well-established
strategy to overcome this limitation is the use of stereo cam-
eras.

Deep stereo visual odometry addresses these challenges
by leveraging photometric consistency to train neural net-
works for depth and motion estimation in a self-supervised
manner. Methods such as [26] and [27] demonstrate state-

© 2025 Logistics Journal: Proceedings — ISSN 2192-9084
Atrticle is protected by German copyright law

DOI: 10.2195/li_proc_wei_en_202510_01

of-the-art performance in both depth prediction and camera
motion estimation. A simple example of the data prepos-
sessing pipline is shown in Figure 2]

3.2 Few-Shot Gaussian Splatting

In 3DGS, the radiance field is expressed through a set of
N Gaussian primitives, whose starting configuration is de-
rived by the depth estimator. Each primitive is parameter-
ized as g, = {in, Xn, an, Sn}, where the mean p,, is ini-
tialized at the corresponding coordinates of the point cloud,
33, represents the covariance matrix, «, the opacity and .S,
the spherical harmonic coefficients for the view-dependent
color [} [7]. The 3D Gaussians are rendered into a 2D image
I(x,y) by applying the camera extrinsics (W, P) followed
by the projection matrix K. In this process, 3DGS emplyos
a non-linear reparameterization of the camera space coor-
dinates to obtain the projection of the covariance ¥2"%7 by
utilizing the Jacobian J locally linearized at the mean:

yrrod = gwyw T T, (1)

The rendering R is performed through a fast rasterization
algorithm, enabling high-speed performance [[1]].

In a few-shot setting, the 3D reconstruction pipeline has
only access to a small set of input images. As a result,
the recovered point cloud is sparse and incomplete, provid-
ing limited cues for matching and surface reconstruction.
To address this problem, an FNN is proposed [7, |6, [12]
to be trained on multi-view datasets and capture object
priors. At inference, the network acts as an inverse map-
ping G = {g.}M, = F(I(x,y)), which generates miss-
ing primitives M and creates the geometry of the whole
scene from the target images. A lightweight and efficient
few-shot approach providing initial insights into the first re-
search question (RQ1) was recently introduced in [6], serv-
ing as a promising foundation for further investigations. In
this approach, a SongUNet [28] is employed to directly
predict Gaussian Primitives G at every image pixel. The
mean . is calculated by backprojecting the pixel coordinates
u = [z;,v;, 1] with the associated depth d and augmenting
the result with a learned offset § to increase the flexibility of
the positioning:

w=du—+90. 2)

For each pixel, the network predicts 12 4+ kc parameters
by means of a 1 x 1 convolutional output layer, which are
mapped to the Gaussian attributes opacity o € R, offset
5 € R3, depth d € R, scale s € R3, rotation quaternion
g € R* and ¢ € R¥e. Since, the depth and the external rota-
tion are already given by the camera odometry, the network
output is reduced to 7 4 kc parameters. An illustration of
the networks output is shown in Figure[3] During training, a
source image I(x,y) is passed through the network to pro-
duce the Gaussian primitives. These are rendered via the dif-
ferentiable renderer R(F'(I(x,y)), ) into the image plane
of a novel viewpoint 7 and the result is compared against
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Figure 3: Neural network output of the few-shot gaussian
splatting.

the corresponding target image T'(z,y). This is done over
the complete dataset D for training to minimize the average
reconstruction loss L:

L= |;ﬁ‘Z:HT(:C,y) ,’R(F(](z,y)),w)HQ &)

The proposed framework was originally designed for
single-image input. For more than one source image, each
image contributes primitives defined by the corresponding
viewpoint 7. Therefore, overlapping Gaussians may be gen-
erated in regions that are observed by more than one view.
The optimization process addresses this redundancy by re-
ducing the predicted opacity value « in regions with multi-
ple overlapping Gaussians, minimizing the influence during
training [6].

3.3 Semantic Extraction

The third research question (RQ3) concerns the problem of
semantic object extraction, for which an initial solution can
be outlined. Addressing this problem requires progressive
scaling and represents a central challenge within the broader
long-term research agenda.

When reconstructing objects from real-world data, im-
ages are captured against diverse and cluttered backgrounds,
introducing unwanted contextual biases into the learning
process. To mitigate this, semantic awareness of the objects
is necessary, as models are prone to hallucinating undesired
environment details inherited from the training data. One
straightforward approach for semantic feature extraction is
given by pre-filtering the background using a segmentation
model. In this setting, SAM can serve as a baseline tool, al-
lowing manual specification of the target object and ensur-
ing that feature extraction is guided by the generated masks
M = (x1,y1,...T;,y;). During FNN training, background
regions are treated as empty pixels that correspond to non-
informative Gaussians, ensuring that they do not contribute
to the reconstruction objective.

Although segmentation preprocessing methods can pro-
vide a short-term solution, they are dependent on manu-
ally annotated labels and often fail to generalize across di-
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verse environments. Directly projecting 2D segmentation
masks into 3D Gaussians has recently attracted attention
(20, 21} 22]]. However, the FNN in a few-shot setting must
learn a complex non-linear mapping from image pixels to
3D primitives. As the geometry of occluded regions can-
not be directly observed, the network is forced to infer
their structure by hallucinating unseen content or reallo-
cating representational capacity from noisy Gaussians. This
highlights a fundamental limitation, since lifting 2D masks
into 3D space is insufficient to classify objects in regions
when solely relying on visible image features. Furthermore,
the covariances of multiple Gaussians may overlap during
the rendering process, making the overlapping regions diffi-
cult to unambiguously associate with a single segmentation
identity.

One potential solution is to integrate the semantic ex-
traction process directly into the FNN. During training, the
network captures the structural dependencies among similar
objects, allowing the usage of semantic information as prior
knowledge that becomes implicitly encoded in the network
weights through inductive bias. This effect is reinforced by
the higher mutual information of real-world objects present
in 3D models compared to 2D images, enabling the model
to exploit geometric and contextual consistency for richer
and more discriminative feature extraction.

3.4 Adaptation in the Logistics Domain

The presented few-shot reconstruction framework is a
domain-agnostic module and can be integrated across differ-
ent fields as a core building block. In this section, a specific
example use case from the logistics domain is introduced.

In intralogistics, autonomous warehouse management is
emerging as an increasingly advanced topic, driven by the
integration of adaptive control and intelligent scheduling
methods. Among the core tasks are reliable grasping oper-
ations and the efficient placement of objects within storage
systems. The availability of known 3D positions can reduce
the complexity of robotic pose estimation by providing the
controller with spatial information about the object. More-
over, few-shot reconstruction based on Gaussian Splatting
requires only camera sensors, making the approach hard-
ware efficient and real-time capable.

As an initial experiment, pallets are selected as the pri-
mary focus, providing a structured test case to validate the
fundamental capabilities of the proposed pipeline. Further-
more, pallets are standardized in their geometry, which en-
ables straightforward validation of the reconstructed mod-
els. The image acquisition is carried out using two Basler
ace 2 Pro industrial cameras in a stereo setup, each featuring
a resolution of 24.4 MP. Before data collection, the camera
parameters must be calibrated to obtain both intrinsic and
extrinsic properties. For the experiments, the stereo setup is
calibrated in a warehouse environment using a PuzzleBoard
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patterns that include positional encoding. For the training of
the FNN multiple viewpoints of the pallets are required. To
construct a sufficient dataset, five representative pallets were
selected, and images were freely captured over a 360° tra-
jectory with tightly spaced viewpoints around each object.
The image resolution is set to 1152 x 1332, while retaining
the flexibility for post-collection adjustment through resiz-
ing or data augmentation. In addition, the dataset D can be
redefined after acquisition to a sparse subset of {2, 4, 6,8}
images, allowing controlled investigations of the training.
The remaining images are employed as target views to as-
sess the accuracy of the 3D reconstruction via novel view
synthesis, with performance optimized against benchmark
metrics such as PSNR, LPIPS, and DSSIM [6, [7]. How-
ever, while these metrics are widely used, they provide shal-
low approximations that miss important perceptual details.
Deep feature—based measurements resulting from the latent
space could offer a stronger alternative for future research,
providing more reliable visual fidelity assessments [29]]. To
provide another baseline for comparison, the performance
can be further evaluated against Gaussian splats generated
from multiple input images.

Lastly, to address the research question (RQ2), addi-
tional data from different objects must be collected to val-
idate the generalizability of the network structure. An ab-
lation study is employed to evaluate the reconstruction al-
gorithm trained on standard Euro pallets, assessing the per-
formance of the model to partially missing pallet structures
and on structurally related variants such as plastic and collar
pallets. At the same time, the training process should be ex-
tended to include varying backgrounds, lighting conditions
and object positions within the images to reduce the risk of
overfitting.

4 Conclusion and Outlook

Few-shot 3D reconstruction with semantic awareness rep-
resents an important advancement, enabling both object
recognition and the instantaneous estimation of the ob-
jects dimensions. Together, these capabilities yield a more
comprehensive representation of the physical environment,
which in turn supports robust and reliable scene interpreta-
tion. This is particularly valuable in domains such as au-
tonomous driving and robotic manipulation, where addi-
tional knowledge about the geometric shape is critical to
effectively interact with the environment. The aim of this
work-in-progress paper is to identify the initial methodolog-
ical components and key challenges involved in creating a
prio-based reconstruciton pipeline for real world objects.

In this context, a strategy for few-shot 3D reconstruc-
tion using only image data was demonstrated to address
(RQ1). The literature review revealed that the current state-
of-the-art frameworks lack semantic awareness. This limi-
tation hinders background-invariant reconstruction. As a re-
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sult, the proposed pipeline in this work is composed of four
principal building blocks: a camera odometry algorithm, a
3D modeling method, a prior-informed FNN, and a seman-
tic extraction module. Furthermore, (RQ2) emphasizes the
need for generalization beyond a single object instance, en-
suring that the approach remains scalable. Without this ca-
pability, the approach would only be applicable to objects
encountered during training. For this reason, a structured
data acquisition protocol was established to guide the col-
lection of training data. The protocol is designed to ensure
sufficient variation across object classes, background con-
ditions, and camera distances, allowing a systematic ab-
lation study on the influence of these factors. Finally, the
long-term research question (RQ3) concerns the explicit
integration of the semantic extraction approach. A central
challenge is that current neural architectures are not inher-
ently suited to transforming 2D segmentation masks into 3D
representations via prio-based 3DGS. Therefore, this work
presents initial suggestions and provides first steps in defin-
ing the problem.

To enable the implementation in the intralogistic do-
main, an image dataset of pallets and semantically similar
objects was collected to evaluate the performance of the al-
gorithmic components. An important direction for future re-
search will be the integration of the semantic extraction pro-
cess directly into the FNN. Although a simple U-Net archi-
tecture from SplatterImage [6] may serve as a baseline for
initial experiments, the gradient flow and loss function must
be adapted to place emphasis on the semantic object fea-
tures. Moreover, since validation and training losses based
on low-level or color characteristics are often insufficient,
future investigations should incorporate comparisons using
deep feature representations in the latent space [29].
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