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In the context of circular production, factories must
cope with uncertainty arising from the reuse of com-

ponents with varying availability, quality, and timing.
This creates new requirements for intralogistic systems
that are both highly flexible and able to adapt to lo-
cal shifts in transport demand or unforeseen events.
We present a novel modular intralogistic system de-
signed to meet these challenges, where autonomous mo-
bile robots can mount self-contained modules to provide
on-demand reconfiguration of material-handling capa-
bilities. To ensure semantic interoperability within the
circular factory, we further introduce the accompany-
ing ontologies that formalize key concepts and support
knowledge-driven decision-making.
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1 INTRODUCTION

In the era of Industry 4.0, data-driven intelligence is
a fundamental enabler of autonomous production and
decision-making systems. Cyber Physical Production Sys-
tems (CPPS), as summarized by [1] and adapted from [2],
are networked systems composed of autonomous and co-
operative elements that interact in situation-dependent ways
across all levels of production. These systems enhance real-
time decision-making, enable adaptation to unforeseen con-
ditions, and support continuous evolution over time.

Building on this foundation, the concept of the circular
factory raises the demands on CPPS beyond those of tra-
ditional linear production systems [3]. A circular factory is
designed to manufacture the latest product generation us-
ing a variable proportion of reused components from pre-
vious product generations. This approach, while advancing
sustainability and resource efficiency, introduces a high de-

gree of uncertainty into the production process - particularly
with respect to the availability, timing, and quality of reused
components. As a result, the associated processes and the
resources on which they are executed require greater flexi-
bility, robustness, and real-time responsiveness. To address
these challenges, CPPS require a shared knowledge repre-
sentation that enables both horizontal and vertical integra-
tion, facilitating system-wide semantic interoperability [4],
[5]. A formalized knowledge model is essential for harmo-
nizing the dynamic interactions among physical resources,
digital twins, and planning systems.

To realize these objectives, we adopt a robust, modu-
lar ontology-based approach that ensures factory-wide in-
teroperability across heterogeneous systems through agree-
ment, agility, and compliance. Agreement is established
through a shared core ontology that defines fundamental
concepts such as products, processes, and resources, serving
as a semantic contract for scalable extension and collabora-
tion without information loss. Agility is achieved through
the modularity of domain-specific sub-ontologies, facili-
tating adaptability and quality control of workflows while
maintaining interoperability. In future work Compliance
will be ensured by aligning with established standards and
by reusing existing ontologies. This reuse-driven strategy
accelerates ontology development, minimizes redundancy,
and secures interoperability of modeled knowledge both
within and beyond the factory ecosystem.

In this paper, we present a novel modular intralogistic
system specifically designed to meet the requirements of a
circular factory [3]. Alongside, we introduce an ontology
that formalizes its key components and interactions. As one
of the subsystems of the circular factory, this ontology ad-
heres to our established standards for semantic interoper-
ability, supports flexible system configuration, and enables
data-driven decision-making in modular and uncertain pro-
duction environments. The remainder of this paper is struc-
tured as follows. Section 2 reviews related work, followed
by a discussion on the knowledge modeling process. Sec-
tion 3 introduces the intralogistics system, with Section 4
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offering a more detailed view of the embedded manipulator
system. Section 5 explores the integration of the proposed
ontology into the runtime system of the circular factory. Fi-
nally, Section 6 concludes the paper and outlines directions
for future work.

2 RELATED WORK

Several ontologies for intralogistics – also referred to as pro-
duction logistics or internal logistics – have been developed
in recent years, differing in their targeted subdomains and
in the level of conceptual detail. One of the earlier contribu-
tions is the core ontology for logistics proposed by Daniele
and Pires [6], which was motivated by the ambiguity of ter-
minology across different stages of the supply chain. Their
ontology builds on foundational constructs such as Activ-
ity, Actor, Physical Resource, Location, and Time, provid-
ing a shared conceptual basis for representing logistics pro-
cesses. Complementary to this, Negri et al. [7] introduce a
taxonomy of physical components relevant to internal lo-
gistics, aligned with the Manufacturing System Ontology
(MSO). Their taxonomy defines key concepts such as Stor-
age, Processor, Unit Load, Operator, Transporter, Sensor,
Controller, Tool, and Fixture, thereby providing a structured
representation of the fundamental building blocks of intralo-
gistic systems. Moving from taxonomies towards reasoning
about system capabilities, Elfaham and Epple [8] focus on
material flow and logistic capabilities of physical devices, in
particular their ability to transport and hand over materials.
Their instantiated ontology can be used to examine possible

transport pathways and feasible handover positions. Simi-
larly, Ocker et al. [9] propose an approach for providing
feasibility feedback during the design phase of intralogistic
systems based on a knowledge graph. This involves compar-
ing product specifications with resource capabilities while
also verifying reachability. D’Amico et al. [10] present an
application study in which an instantiated ontology is used
for failure detection in a sorting station, based on a set of
rules evaluated at runtime.

The ontology introduced in this work differs from pre-
vious approaches in that it is tailored specifically to the
requirements of the circular factory, with the goal of cap-
turing its inherently interdisciplinary nature across multi-
ple domains. Within this context, our knowledge model-
ing process is designed to support cross-project knowledge
sharing, represent cross-domain concepts and relationships,
and enable knowledge-driven decision-making at scale. Ul-
timately, this facilitates the systematic reuse of components
and thereby contributes to greater sustainability.

3 INTRALOGISTIC SYSTEM

The intralogistic system plays a central role in picking,
transporting, and manipulating products and components on
the circular factory shop floor. Since the material flow of
both new and reused components is inherently uncertain
and may require on-the-fly adjustments based on the out-
comes of disassembly or diagnostic processes, the system
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Figure 1: Overview of the intralogistic system for a circular factory: Mobile robots equipped with interchangeable modules
navigate the shop floor to enable flexible transport and material handling operations.
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Figure 2: Overview of the intralogistic system

Figure 3: A MobileRobot equipped with two LaserScanner

and MecanumWheel s which allow omnidirectional motions.

must be highly adaptable and flexible [11]. Figure 1 pro-
vides an overview on the proposed system.

On the most abstract level, see Figure 2, the system con-
sists of a fleet of MobileRobot s that can freely navigate the
shop floor. These robots can mount different types of self-
contained Module s, either to reposition the modules within
the factory or to extend their own capabilities for carry-
ing out various material handling processes. On a control
level, and aligned with the concepts of the Core Ontology
introduced in [12], IntralogisticsTask s generated by the pro-
duction control system are auctioned by an Auctioneer . The
auction process results in executable IntralogisticOperation s,
which define the concrete actions to be performed. The fol-
lowing subsections examine these concepts in greater detail.

At the time of writing, the accompanying ontologies are
still under active development. The ontologies referenced in
this paper are publicly accessible and include the circular
factory Core Ontology 1, the Intralogistics Ontology 2 and
the Manipulation System Ontology 3.

3.1 Mobile Robots and Modules

The core:Resource s of the proposed intralogistic system re-
flect the high degree of flexibility and adaptability required
in the circular factory. We distinguish between two types of

1https://w3id.org/circularfactory/Core
2https://w3id.org/circularfactory/IntralogisticSystem
3https://w3id.org/circularfactory/ManipulationSystem

resources: MobileRobot s and Module s. A detailed view of
the corresponding ontology elements is shown in Figure 4.

In our demonstration factory, we employ a fleet of
homogeneous autonomous MobileRobot s. Each robot is
equipped with MecanumWheel s for omnidirectional move-
ment and multiple LaserScanner s for localization and navi-
gation using SLAM techniques. An exemplary instance is
shown in Figure 3. Through the use of ModuleAdapter s,
MobileRobot s can mount Module s. These modules are

tool-like, self-contained units that can operate indepen-
dently but require a MobileRobot for transportation. Once
mounted, a Module co-moves with its carrier, thereby ex-
tending the robot’s capability.

Modules enhance the system’s capabilities on demand
and enable the flexible execution of a wide range of
material-handling tasks. At the current stage of devel-
opment, we distinguish between two types of Module s:
the TransportModule and the ManipulatorModule . The
TransportModule acts as a passive carrier that facili-

tates the relocation of items between different stations
while acting as a flexible component buffer, whereas the
ManipulatorModule provides grasping and handling func-

tionality when required. In addition, a ChargingStation is
included in the infrastructure to provide the necessary capa-
bility for recharging the individual module batteries.

Aligned with [12], each of the core:Resource s relate
to a specific set of capabilities. The MobileRobot exposes
both a MoveSelfCapability and a MoveCapability while the
ManipulatorModule has a ManipulationCapability .

3.2 Tasks and Operations

In the context of the circular factory, a core:Task is gen-
erally defined as a production step that takes one or more
components as input and produces one or more compo-
nents as output [12]. For the intralogistic system, tasks gen-
erated by the production planning and control system are
represented as IntralogisticsTask s, as illustrated in Figure 5.
An IntralogisticsTask is characterized by the following ele-
ments:

• the PickupLocation , a core:Location where the
core:Component must be collected.

• the TargetLocation , a core:Location where the
core:Component should be moved to.

• a time window for the pickup, bounded by the
EarliestPickupTime and the LatestPickUpTime .
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Figure 4: Intralogistic resources and their capabilities

• the LatestDeliveryTime , representing the latest ac-
ceptable time by which the core:Component should
arrive at its TargetLocation .

An IntralogisticsTask represents a high-level specification of
what needs to be achieved in terms of material flow, without
prescribing how it is to be executed. Since such tasks are too
abstract to be directly allocated to specific core:Resource s,
they must be decomposed into smaller units. For this pur-
pose, we define the IntralogisticsAtomicTask , a sub-concept
of core:AtomicTask . These atomic tasks represent the min-
imal, resource-allocatable subtasks that together fulfill an
IntralogisticsTask . In the current development state, we

distinguish between four different IntralogisticsAtomicTask ,
namely a ManipulationTask , a MoveTask , a MoveSelfTask
and a ChargingTask , Each IntralogisticsAtomicTask is fur-
ther characterized by:

• a TaskStatus , indicating its current execution state,

• an EarliestStartTime , specifying when execution
may begin, and

• a LatestFinishTime , defining the deadline for com-
pletion.

core:Operation s represent the concrete execution of a
task on a specific core:Resource , see [12]. In the intralo-
gistic system, the translation from a task to an operation is
managed by the Auctioneer , which creates a corresponding
IntralogisticsOperation once a task has been successfully al-

located to a core:Resource . Each IntralogisticsOperation is
characterized by, see Figure 6:
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Figure 5: The structure of an IntralogisticsTask

• a PlannedStartTime , the timestamp at which the
core:Resource is scheduled to begin the operation,

• a PlannedFinishTime , the expected time of comple-
tion, and

• the OperationStatus , specifying its current execution
state of the operation.

3.3 Capability Matchmaking and Auctioneer

The Auctioneer serves as the central coordination mech-
anism of the intralogistic system. Its primary function is
to mediate between high-level compound tasks originating
from factory planning and the heterogeneous resources that
carry them out. As described in [13], intralogistics con-
trol operates across multiple layers. The auctioneer bridges
these layers by recursively decomposing IntralogisticsTask s
into IntralogisticsAtomicTask s and subsequently transform-
ing them into executable IntralogisticsOperation s that are as-
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Figure 6: The structure of IntralogisticsOperation s and
their relations to IntralogisticsCapability

signed to specific core:Resource . This approach is suitable
for the circular factory, as it allows the best robots and mod-
ules for a task to be found quickly and efficiently by calcu-
lating their ability to perform a task in a decentralized man-
ner. The task decomposition is achieved through a dynamic,
auction-based allocation process. The auctioneer performs
three key functions:

1. It queries the knowledge graph to identify eligible
resources that possess the required capabilities.

2. It generates candidate operations by simulating fea-
sible start and finish times.

3. It compares bids from the candidate resources and
selects a winner to execute the operation.

Once a winning bid is selected, the corresponding
IntralogisticsOperation is instantiated, annotated with its

planned start and finish times, and marked as planned. All
competing candidate operations are discarded, ensuring a
one-to-one mapping between each IntralogisticsAtomicTask
and its assigned IntralogisticsOperation .

The current auctioneer approach, an adapted form of
the TEPSSI algorithm by [14], uses multi-stage sequen-
tial auctions tailored to the interdependent nature of the
IntralogisticsAtomicTask s. ManipulatorModule s first bid to

perform pick operations. Secondly, TransportModule s bid
to carry out the delivery, including reloaction to the pick
site, waiting for the manipulator to finish, and subsequently
transporting the product to the target location. Finally,
MobileRobot s bid to integrate the movement of these mod-

ules into their schedules, using schedule-insertion heuris-
tics to minimize the makespan while avoiding conflicts.
This mechanism ensures temporal and spatial coordination
among all resources. Movements are planned just-in-time,
allowing robots and modules to dynamically form collabo-
rative teams around each IntralogisticTask and dissolve after
execution.

4 MANIPULATOR MODULE

Within the modular intralogistic system, the
ManipulatorModule extends the system’s capabilities

beyond transportation and buffering by enabling the active
handling of components. While the MobileRobot s provide
mobility to all Module s and the TransportModule ensures
buffering and relocation, many tasks in the circular factory
require grasping, repositioning, or orienting components –
capabilities that only the ManipulatorModule provides. A
key strength lies in its versatility: it can operate as a mobile
unit, mounted on a MobileRobot to perform manipulation
tasks throughout the shop floor, or used as a stationary
pick-and-place robot at fixed locations. This dual mode
enables flexible system design, efficient resource usage,
and a highly automated material flow.

The manipulation system refers to the broader functional
concept that integrates the module’s hardware, control logic,
sensors, environmental representations, and the learning-
based grasp software. Figure 7 illustrates this system. In
the following sections, we provide technical details on its
two main components: the Manipulator (Section 4.1), re-
sponsible for executing actions in the environment, and the
GraspLearningSystem (Section 4.2), which handles data pro-

cessing, learning, and action prediction.

4.1 Manipulator

The Manipulator , visualized in Figure 8, consists of the
physical components and control logic to enable seam-
less execution of actions and data recording. The physical
components of the manipulator encompass a RobotArm ,
equipped with a parallel jaw RobotGripper , which deliv-
ers proprioceptive data, including the joint configurations of
the RobotArmState and the current GripperPose . To enable
the capability of 6-DOF grasping, the GripperPose com-
prises Position and Orientation parameters, as well as the
GripperAperture , i.e., the separation of the gripper fingers.

To capture exteroceptive observations, i.e., informa-
tion about the environment, the Manipulator is equipped
with one or more RobotSensor s. A common example is a
mounted RGB-D camera, which captures both depth and
color information of the environment. These images are
then transformed into structured SensorData , making it pos-
sible to trace where the data came from and to share it con-
sistently across different systems.

Enabled by the captured Data , the
GraspLearningSystem (see Section 4.2) generates physically

grounded actions, either as a grasp pose or an entire trajec-
tory. In the case of grasp pose prediction, a MotionPlanner
computes a trajectory from the current GripperPose to
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Figure 7: The structure of a learning-based manipulation system integrates with the intralogistic system (ils).

Figure 8: The physical components of an instance of the
Manipulator including a RobotArm , a RobotSensor , in this

case an RGB-D camera, and a RobotGripper , in this case a
parallel jaw gripper.

the TargetGripperPose . Given the current configuration
of the RobotArmState and the GripperPose , a control
module executes the given trajectory. Subsequent changes
to the environment are captured by the RobotSensor s,
establishing a closed-loop and interpretable data flow
between the components of the Manipulator and the
GraspLearningSystem .

The developed ontology facilitates both modeling
manipulators from RealWorldEnvironment s, as well as
SimulationEnvironment s, as the basic components and con-

trol loop are similar in both.

Overall, this manipulator ontology systematically mod-
els the physical state of the robot, control logic, and per-
ception history, thereby supporting task execution such as
object picking, placement, and real-time adaptation in dy-
namic intralogistic environments. At the same time, we em-
phasize seamless integration with learning-based software
components as a key contribution of this ontology, facilitat-
ing a structured information flow from sensor observations
to neural inference and continuous lifelong learning, which
will be detailed in Section 4.2.

4.2 Grasp Learning System

The GraspLearningSystem is responsible for data process-
ing, continual learning, inference, real-time decision mak-
ing and action predictions. It leverages learned grasping
strategies to infer adaptive grasp poses or trajectories, while
also quantifying uncertainty in real-time [15], [16]. In the
following, we outline its role in grasp prediction, execution,
and training, and its interaction with the Manipulator .

© 2025 Logistics Journal: Proceedings – ISSN 2192-9084
Article is protected by German copyright law

Page 6



DOI: 10.2195/lj proc klein en 2025 01

SensorData is collected in a DataBuffer , where it may
be pre-processed through labeling, filtering, weighting, or
augmentation, depending on the concrete learning system.
During training, this data is used by a TrainingSystem that
trains NeuralNetworkModel s. To ensure safety during train-
ing and evaluation, the GraspLearningSystem may employ
a SimulationEnvironment , which mirrors the structure of the
RealWorldEnvironment , ensuring seamless transfer between

simulated and physical execution.

During inference, the NeuralNetworkModule predicts
gripper poses or trajectories based on current SensorData .
The raw predictions are post-processed, e.g., through scal-
ing or coordinate frame transformations, before being exe-
cuted by the Manipulator .

To support object-centric grasping, an ObjectDetector
locates target components within a Workspace . The
workspace acts both as a bounding box for perception
and as a spatial constraint for manipulation, defining the
Environment in which the manipulator operates.

The proposed model is agnostic to a specific learning
paradigms. It can be applied to open-loop grasp prediction,
where the grasp poses are inferred from a single observa-
tion, as well as to closed-loop control strategies, such as re-
ceding horizon control, a strategy commonly used in state-
of-the-art diffusion policies [17]. By incorporating histori-
cal proprioceptive data into the control loop, the modeled
system further supports lifelong learning. This is reinforced
by the inclusion of a SimulationEnvironment , which allows
for safe exploration during online learning.

5 INTEGRATION INTO RUNTIME SYSTEM

A central component of the circular factory is the ontology-
based knowledge backbone. It integrates the semantic rep-
resentation of products, processes, resources, tasks, capa-
bilities, and operations with data storage and research data
management, thereby enabling efficient knowledge access
in the presence of uncertainty and supporting validated in-
ference directly on the shop floor [5]. Within this frame-
work, intralogistics plays a particularly crucial role, as it
forms the connective layer between otherwise heteroge-
neous resources and processes. By coordinating the flow
of materials, components, and products across different sta-
tions, the intralogistics system ensures that production steps
remain synchronized and that flexibility and adaptability are
maintained even under uncertain conditions.

The semantic alignment within the circular factory en-
ables the explicit capture of instance specific relations be-
tween processes, resources, and products. This creates a
foundation for future AI-driven decision support systems,

which can exploit these structured relations to derive higher-
level optimizations, detect inefficiencies, or suggest alterna-
tive resource allocations in real time. In this way, the ontol-
ogy not only supports current runtime integration but also
opens pathways for predictive and adaptive control strate-
gies that improve resilience and efficiency of factory opera-
tions.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced the concept of a modular in-
tralogistic system tailored to the requirements of a circular
factory, which is characterized by high variability and un-
certainty of components. Central to our approach is the flex-
ible combination of mobile robots with mountable modules.
Acting as versatile tools, these modules can be deployed ei-
ther statically or dynamically across the shop floor, unlock-
ing new potential for highly adaptable and resource-efficient
material flow. At the control level, the system supports a se-
mantic auctioneer that bridges high-level tasks and hetero-
geneous resources through multi-stage sequential bidding.
This mechanism enables dynamic resource coalitions, en-
sures temporal and spatial synchronization of distributed
agents, and provides scalability by allowing additional re-
sources or tasks to be integrated without structural changes.

To ensure interoperability and seamless integration
within the circular factory, we introduced an ontology for
the proposed intralogistic system and its embedded ma-
nipulation system. The manipulation system ontology is
designed as a standalone component, enabling integration
not only within intralogistics but also as a potential build-
ing block within other systems inside the factory. Looking
ahead, we aim to further extend the ontology to cover com-
plete flows of operations and to support failure handling
in case of unpredicted events. While in the current devel-
opment phase, we prioritize ontology alignment inside the
circular factory, future versions will focus aligning the on-
tology with widely adopted standards, such as the Semantic
Sensor Network Ontology, to enhance reusability and cross-
domain interoperability beyond the circular factory.
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