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n procurement logistics, manual route planning often
leads to inefficiencies such as high costs, congestion,
and unbalanced truck arrivals. This paper presents a
framework for applying Vehicle Routing Problem (VRP)
heuristics to inbound logistics, formulated as an Open
VRP with real-world constraints such as vehicle capac-
ities, time windows, and maximum tour duration. Two
classical construction heuristics, the Nearest Neighbor
Heuristic and the Insertion Heuristic, are adapted and
implemented in a configurable tool that enables sce-
nario definition and reproducible evaluation. The ap-
proach is motivated by a case from a German manufac-
turing company, whose situation served as a reference
point for designing fictitious but realistic datasets. The
evaluation across 18 scenarios shows that both heuris-
tics generate feasible solutions suitable as baselines for
routing decisions. On average, the Insertion Heuristic
achieves 13 % higher loading meter utilization (83 %
compared to 69 % for the Nearest Neighbor Heuristic)
and requires fewer tours, while overall travel times re-
main nearly identical between the two methods. Over-
all, the study demonstrates that heuristic methods pro-
vide systematic and time-efficient support for inbound
routing in procurement logistics, offering a foundation
for practical decision-making and further methodologi-
cal refinements.

[Keywords: Vehicle Routing Problem, Procurement Logis-
tics, Inbound Logistics, Heuristics]

1 Introduction

In the context of inbound logistics, companies encounter the
challenge of optimizing route planning for inbound deliver-
ies in a manner that reduces transportation costs and min-
imizes environmental impact. This planning is often car-
ried out manually, based on experience and operational data
such as transport times, handling times, and shipment char-
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acteristics as weight, size or quantity. This process is time-
consuming and often results in inefficient routing and an
uneven distribution of truck arrivals throughout the day. The
resulting peak loads cause congestion and inefficient utiliza-
tion of internal resources. While theoretical approaches and
vehicle routing algorithms already exist to optimize such
processes, their practical application in procurement logis-
tics remains limited due to the complexity of real-world op-
erations.

This study addresses that gap by presenting a config-
urable tool that operationalizes established vehicle rout-
ing heuristics for inbound logistics. The tool ingests
procurement-related data, maps practical constraints such
as time windows, loading meters, weight limits, and max-
imum tour duration, and generates feasible tour plans to-
gether with transparent key performance indicators. The im-
plementation applies classical construction heuristics that
can be executed with limited computational effort and pro-
vides interfaces for parameterization, scenario definition,
and reproducible evaluation.

The approach is motivated by a real industrial challenge
observed at a large German manufacturing company, where
the problem of inbound routing arises in practice. For this
study, the company’s situation served as a reference point to
design fictitious datasets that replicate typical procurement
conditions. While the datasets are entirely fictitious and in-
dependent from the company, their structure and parame-
ters reflect realistic shipment patterns, geographical distri-
butions, and operational constraints. In line with practical
procurement settings, the tours are assumed to be carried
out by external logistics service providers, implying flexible
fleet availability. This ensures that the scenarios used in the
evaluation remain close to practical requirements, while the
developed tool is designed to be applicable across different
companies and not limited to a single case. Moreover, the
shown algorithm is successfully in use in that company.

The paper is structured as follows: Section [2] reviews

related work on routing problems and heuristics in logis-
tics. Section 3] presents the problem formulation used in this
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study. Section[d]describes the heuristic methods and the im-
plementation details, including the output structure used for
evaluation. Section [5] outlines the application setup, includ-
ing the datasets and constraint variants used for testing. Sec-
tion[6]reports the results and discusses their implications for
procurement logistics. Section [/| concludes the paper and
provides an outlook on future research.

2 Related Work

In the scientific literature, route planning is typically de-
scribed using a depot-customer relationship, where cus-
tomers are supplied from a central depot (see [} 2} 3| i4]).
This basic model serves to illustrate routing problems and
solution approaches and is adapted in this study to the sce-
nario of multiple suppliers delivering to a central industrial
site. The foundation of routing problems is the well-known
Traveling Salesperson Problem (TSP), where a single tour
driver must visit a set of customers exactly once while min-
imizing total distance or cost (see [3} 4} 5], [6]). The TSP
is one of the most studied combinatorial optimization prob-
lems, with its first formalization published by Dantzig et al.
in 1954 [7]].

The TSP is extended by the Vehicle Routing Problem
(VRP), where multiple vehicles depart from a depot to serve
several customers. The Capacitated Vehicle Routing Prob-
lem (CVRP) represents a variant that results in a set of tours
corresponding to multiple vehicles. The capacitated variant
considers vehicle capacity constraints [8} 9]. Further prac-
tical extensions include the Vehicle Routing Problem with
Time Windows (VRPTW), which incorporates time restric-
tions for deliveries [4} 18], and the Open Vehicle Routing
Problem (OVRP), where the start and end points of the tours
may differ [4]} 8]

These routing problems can be decomposed into an as-
signment problem, determining the allocation of customers
to tours, and a sequencing problem, defining the optimal or-
der of customer visits [10]. Both subproblems are NP-hard,
implying that computational complexity increases exponen-
tially with problem size [S} [11] unless P = N P. For small
problem sizes, exact methods such as branch-and-bound al-
gorithms can be applied [5} [12], but these quickly become
impractical as the number of customers increases. There-
fore, heuristic approaches are commonly used in real-world
applications, offering feasible but not necessarily optimal
solutions within reasonable computational time [13].

This study focuses on classical construction heuris-
tics, which are particularly useful in industrial practice
for generating fast initial solutions [3]]. Specifically, the
Nearest Neighbor Heuristic, first introduced by Karg and
Thompson [14], iteratively selects the nearest unvisited cus-
tomer [[15} [16} [17], and the Cheapest Insertion Heuristic,
originally developed for the Traveling Salesman Problem
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by Solomon [18], are applied and evaluated in the context
of inbound logistics [1} 2].

3 Preliminaries

To address a practical application in procurement logis-
tics, we model the problem as a mathematical optimization
task. Specifically, we formulate it as an Open Vehicle Rout-
ing Problem (OVRP) with additional real-world constraints
such as vehicle capacity and scheduling restrictions. We fol-
low the standard formulation introduced by [19].

Let a graph G = (V,E) be given, where V =
{vo,v1,...,v,} denotes a set of locations. The node v rep-
resents the central customer location, while each node v;
with ¢ > 0 represents the ith supplier location. Each edge
(1,7) € Eis associated with a cost ¢;;, representing the time
required to travel from node ¢ to node j.

The solution consists of a set of tours. Let x;;; be a bi-
nary decision variable indicating whether edge (3, j) is tra-
versed in tour ¢. The number of available tours is upper
bounded by a parameter K, which is assumed to be large
enough to ensure feasibility.

Each tour is executed by one truck, which is subject to
the following real-world constraints:

e The maximum loading meters it can carry.
* The maximum loading weight it can carry.
* Time windows for pickups and deliveries.
e The maximum duration of a tour.

These limits depend on the truck type and the associated
contract. We denote the maximum allowed loading meters
by ), and the maximum allowed weight by 1. Each location
v € V is associated with a fixed time window [c,, 3,,] dur-
ing which service must occur. The maximum duration of a
tour is denoted by A.

For the nodes we considered d? as the required loading
meters at node ¢, d' as the weight of the goods at i and s; as
the necessary service time at ¢. The parameters and variables
are summarized in Table [Tl

Mathematical Model

Based on the parameters, we present the mathematical
model we consider:
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Table 1: Model parameters and decision variables.

Symbol Type Description

1% Set Set of all locations (nodes)

ECVxV Set Set of edges between loca-
tions

Cij Parameter Cost (travel time) of edge
(i,7)

K Parameter Maximum number of tours
(assumed large enough)

A Parameter Maximum loading meters
for truck

I Parameter Maximum loading weight
for truck

[, By Parameter Time window during which
location v must be served

A Parameter Maximum duration of a tour

d; Parameter Loading meters required at
node ¢

d’ Parameter Loading weight required at
node ¢

Si Parameter Service time at node ¢

7
xi;¢ € {0,1} Binary Variable 1ifedge (i, j) is used in tour
t, 0 otherwise

a; Variable Arrival time at node 7

K
mlnz Z Zcijxijt (1)

eV jev t=1
K
Zzﬂfijtzl Vj e V\ {0} 2)
i€V t=1
K
szijtzl Vi e V' \ {0} 3)
JEV t=1
szijt >7(S) VSCV\{0},S#0 4
i¢S jeS
szi\xzjtﬁ)\ vi=1,...,.K 5)
i€V jev
szﬁmzjtfﬂ Vi=1,...,K (6)
i€V jev
a;<a; < B VieV (7)
a zaitsite; - Ml-wg) Wk ®

The objective function (I)) minimizes the total travel cost
over all used edges in all tours. Each location (excluding the
depot) must be visited exactly once, enforced by constraints
(2) and (3), which ensure a one-to-one assignment of visits
across tours.

Constraint (@) is a subtour elimination constraint ensur-
ing connectivity and preventing disconnected cycles. Con-
straints (3) and (6) enforce the vehicle capacity limits in
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terms of loading meters and weight, respectively, for each
tour.

Time windows for servicing each location are enforced
via (7)), ensuring that the arrival time at each node lies within
its permissible time interval. Finally, constraint (8] ensures
correct time progression between visits. Here, M is a suf-
ficiently large constant used in the time propagation con-
straint (Big-M method).

4 Methods

To solve the inbound vehicle routing problem formulated in
Section |3, we apply two classical but adaptable heuristics:
the Nearest Neighbor Heuristic (NNH) and the Insertion
Heuristic (IH). These methods are selected for their com-
putational efficiency and their flexibility in accommodating
operational constraints such as vehicle capacities, time win-
dows, and tour duration limits. The heuristics are designed
to rapidly produce high-quality, feasible solutions that re-
flect real-world logistics planning requirements.

4.1 Input Data and Parameter Configuration
The model requires three categories of input data:

¢ Location data: includes travel times, distances, and
time windows for all suppliers and the customer, ex-
tracted from internal systems.

« Shipment data: derived from procurement require-
ments, including quantities, weights, and volume di-
mensions per supplier.

¢ Constraint parameters: such as vehicle capacity
limits, maximum tour duration, and service times,
defined from operational experience and internal
guidelines.

Table[2]provides an overview of the main parameters and
their practical values used in the heuristics.

Table 2: Heuristic parameter configuration (representative
values).

Parameter Value | Description

A 13.6 m | Max. loading meters per truck

I 24,000 kg | Max. loading weight per truck

A 8 h | Max. tour duration

S5 20 min | Service time at each supplier

[y, Bu] 6:00-16:00 | Time windows at suppliers (standard)
M 1000 min | Big-M constant for time constraints

The chosen parameter values reflect typical constraints
observed in European procurement logistics. For example,
13.6 meters and 24,000 kg correspond to standard trailer
capacity limits, while the 8-hour duration aligns with la-
bor regulations and scheduling practices. Service times and
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time windows are based on average handling durations and
supplier availability. Throughout the analysis, each tour
is assigned the smallest feasible truck type. In addition,
the model incorporates both qualitative and quantitative re-
quirements. Qualitatively, it is assumed that all considered
suppliers can generally be served within a milk-run concept,
whereas direct deliveries are treated separately. From a cost
perspective, fixed transportation costs are incurred regard-
less of tour length, making both the minimization of total
distance and the number of tours relevant objectives. These
requirements provide the basis for the subsequent tour con-
struction heuristics.

4.2 Nearest Neighbor Heuristic (NNH)

The Nearest Neighbor Heuristic builds tours incrementally
by selecting the unassigned supplier that is geographically
closest (in terms of travel time) to the current endpoint of a
tour. To reduce long detours, the first supplier of a new tour
is always the one furthest from the customer. Time feasibil-
ity, capacity limits, and maximum duration are continuously
monitored.

Algorithm 1: Nearest Neighbor Heuristic

1: Initialize all suppliers as unassigned

2: while unassigned suppliers remain do

3:  Start new tour 7; with the unassigned supplier v ¢ fur-
thest from customer and next index ¢ > 0

4:  Initialize T;: loadr, < O, lengthTL, + 0, timep, 0

5:  while feasible insertion exists do

6: Find nearest unassigned supplier v,, to last node in
T;
7: Compute arrival and departure times at v,,
8: if capacity and time constraints satisfied then
9: Add v, to T;; mark v,, as assigned
10: Update load, weight, and time of T
11: else
12: Remove v,, from candidate set and continue
13: end if

14:  end while

15:  Close tour T;

16: end while

17:

18: return tours 7%,..., Tk

4.3 Insertion Heuristic (IH)

The Insertion Heuristic constructs tours by evaluating all
possible positions for inserting each unassigned supplier
into existing tours. The position yielding the smallest ad-
ditional cost (typically travel time) is selected, provided it
results in a feasible tour.

© 2025 Logistics Journal: Proceedings — ISSN 2192-9084
Article is protected by German copyright law

DOI: 10.2195/lj_proc_gehl_en_202510_01

Algorithm 2: Insertion Heuristic

1: Initialize empty tours 77,75, ..
01In

., T with depot node

2: Set of unassigned customers U < V' \ {0}
3: while U # 0 do
4:  for each customer j € U do
5: for each tour T} do
6: for each feasible insertion position in 7; do
7: if insertion of 5 in 7; is feasible w.r.t. capacity
and time then
8: Compute cost increase 6
9: Store insertion (7, ¢, position, )
10: end if
11: end for
12: end for
13:  end for

14:  Select the insertion with the smallest ¢

15:  Insert customer j into tour 7} at best position
16:  Update arrival times and loads in 73

17 Remove j from U

18: end while

19:

20: return tours 74,..., Tk

4.4 Output Structure and Evaluation
Both heuristics output a set of feasible tours that:
 Cover all suppliers exactly once.
* End at the customer location.
* Satisfy all vehicle and scheduling constraints.
Each tour includes:
* An ordered list of supplier locations.
* Arrival, departure, and waiting times at each stop.
* Total driving time, waiting time, and service time.
* Total loading meters and weight.

This structured output supports not only fast planning
but also enables comprehensive evaluation in terms of effi-
ciency, feasibility, and resource utilization. In the next sec-
tion, we evaluate and compare them across 18 test scenarios.

5 Experimental Setup

To evaluate the applicability of the presented heuristics
to real-world procurement logistics, we apply the Nearest
Neighbor Heuristic (NNH) and the Insertion Heuristic (IH)
to a fictitious data set. The data set was constructed on the
basis of data provided by a large German industrial com-
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pany, which served as a template for designing a realistic
scenario. This approach ensures that the resulting data re-
mains close to actual procurement conditions while not rep-
resenting any real company. The structure and parameteri-
zation of the data reflect typical delivery patterns, geograph-
ical distributions, and capacity requirements observed in in-
dustrial logistics networks.

The test scenario consists of a central production site
located in Dortmund and 20 supplier locations distributed
across a plausible delivery area. Travel times between all
locations were generated using the OpenRouteService API
based on realistic geographic coordinates and actual road
networks. This ensures that spatial relationships and travel
durations mirror those found in practice.

Each supplier is associated with shipment-specific at-
tributes including loading meters, shipment weight, time
windows, and service times. These parameters were defined
to capture the heterogeneity of inbound flows typically ob-
served in manufacturing industries. An overview of the pa-
rameter ranges is provided in Table

Table 3: Supplier data — key characteristics (20 suppliers).

Parameter Range | Mean (SD)
Travel time [min] 7-220 -
Loading meters [m] 1.2-12.8 6.4 (3.8)
Shipment weight [t] 0.6-17.5 43t(4.1)
Service time [min] 30-90 -
Time window start 6:00-10:00 -
Time window end 14:00-21:00 -

To further examine the robustness of the heuristics, three
dataset variants were created from this scenario. While all
share the same network structure with 20 suppliers and one
central production site, the datasets differ in shipment char-
acteristics and travel times. This design enables systematic
evaluation across a range of representative procurement lo-
gistics situations, from baseline cases to more challenging
environments.

* Dataset I: Represents a realistic base case with het-
erogeneous shipment sizes and weights as well as
realistic travel times, with loading meters ranging
from 1.2m to 12.0m (average 6.29 m) and loading
weights from 0.525t to 17.0't (average 5.57 t).

» Dataset II: Maintains the travel times and time win-
dows of Dataset I but replaces the shipment data
with smaller and more balanced consignments, with
loading meters ranging from 1.1 m to 6.0m (aver-
age 3.60m) and loading weights from 0.8t to 10.0t
(average 2.95t). This enables a higher consolidation
of shipments into fewer tours, thereby testing the
adaptability of the heuristics to structural changes in
shipment composition.
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* Dataset III: Retains the shipment data of Dataset 11
but doubles all travel times. This creates an arti-
ficially larger geographical distribution and longer
tours without altering shipment characteristics. The
design allows to examine how the heuristics perform
under significantly increased travel times, reflecting
scenarios such as wider supply regions or persistent
congestion effects.

This structure isolates the effects of shipment compo-
sition and travel times, allowing a targeted analysis of the
robustness of both heuristics.

5.1 Constraint Variants

To further evaluate the heuristics under diverse operational
settings, three variants of constraint parameters are defined.
These variants represent different levels of planning real-
ism and flexibility, ranging from conservative assumptions
to idealized conditions.

* Variant A simulates standard operating conditions
with conservative planning buffers. Maximum ve-
hicle capacities are set to 13.6 meters and 24 tons,
while a buffer of 0.5 meters and 2 tons is subtracted
to account for planning uncertainties. The maximum
tour duration is limited to 8 hours, reflecting stan-
dard daily driver availability. For the Nearest Neigh-
bor Heuristic, a maximum waiting time of 1 hour is
allowed.

* Variant B assumes extended planning flexibility,
e.g., through handover between drivers or the use of
relay concepts. The maximum tour duration is in-
creased to 16 hours, while all other parameters re-
main as in Variant A.

* Variant C assumes the absence of planning buffers.
Vehicle capacities are fully utilized without safety
margins, and the maximum tour duration is kept at
8 hours, identical to Variant A. The variant repre-
sents a scenario without operational uncertainties,
for example when loading procedures and shipment
characteristics are standardized and predictable, so
that additional safety margins are not required in the
planning.

The combination of three fictitious datasets with two
heuristics (NNH and IH) and three constraint variants (A-C)
results in a total of 18 test scenarios. This experimental de-
sign systematically explores how changes in shipment struc-
ture, travel times, and operational constraints affect solu-
tion quality. The results provide insights into the sensitivity,
robustness, and practical applicability of the heuristic ap-
proaches in procurement logistics.
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Table 4: Detailed results across datasets (I-111) and constraint variants (A—C).

Dataset I 1] L]
Constraint Variants A B C A B C A B [
max. driving time [hh:mm] 08:00 16:00 08:00 08:00 16:00 08:00 08:00 16:00 08:00
max. waiting time [hh:mm] ‘ 01:00 ‘ 01:00 ‘ 02:00 ‘ 01:00 | 01:00 ‘ 02:00 | 01:00 ‘ 01:00 | 02:00
loading meters (jumbo trailer) [m] 15.5 15.5 15.5
buffer [m] 0.5 ‘ 0.5 | 0 0.5 | 0.5 ‘ 0 0.5 ‘ 0.5 ‘ 0
loading meters (mega trailer) [m] 13.5 13.5 13.5
buffer [m] 0.5 ‘ 0.5 | 0 0.5 | 0.5 ‘ 0 0.5 ‘ 0.5 ‘ 0
loading weight [t] 24 24 24
buffer [t] 2 2 0 2 2 0 2 2 0
Algorithm INS NN INS NN INS NN INS NN INS NN INS NN INS NN INS NN INS NN
time before optimization [hh:mm)] 55:25 | 58:22 | 58:14 | 57:13 | 56:13 | 57:52 | 47:17 | 48:56 | 46:51 | 44:56 | 47:17 | 44:57 | 66:50 | 67:38 | 62:47 | 62:19 | 66:50 | 67:38
time after optimization [hh:mm] 55:25 | 56:04 | 56:56 | 55:55 | 54:57 | 55:14 | 47:17 | 46:56 | 46:51 | 44:56 | 47:17 | 44:57 | 66:50 | 66:51 | 62:47 | 62:19 | 66:50 | 66:51
number of tours 12 13 12 13 12 13 7 8 7 7 7 7 10 10 7 7 10 10
loading meter utilization before buffer [%]| 90.79 | 81.61 | 89.64 | 81.63 | 92.78 | 83.53 | 84.05 | 66.24 | 79.67 | 72.73 | 85.80 | 73.86 | 60.16 | 51.79 | 84.31 | 72.10 | 60.16 | 25.99
loading meter utilization after buffer [%] | 94.05 | 84.57 | 92.82 | 84.59 | 92.78 | 83.53 | 87.08 | 68.77 | 82.41 | 74.73 | 85.80 | 73.86 | 62.41 | 53.72 | 87.21 | 74.73 | 60.16 | 25.99
weight utilization before buffer [%)] 33.83 | 31.23 | 33.83 | 31.23 | 33.83 | 31.23 | 35.29 | 30.87 | 35.29 | 35.28 | 35.29 | 35.28 | 24.70 | 24.70 | 35.29 | 35.28 | 24.70 | 24.70
weight utilization after buffer [%] 36.91 | 34.07 | 36.91 | 34.07 | 33.83 | 31.23 | 38.50 | 33.68 | 38.50 | 38.49 | 35.29 | 35.28 | 26.95 | 26.94 | 38.50 | 38.49 | 24.70 | 24.70

6 Results and Discussion

The evaluation of the two heuristics reveals differences in
their performance with respect to the objective of minimiz-
ing total travel cost. Both approaches generate feasible tour
plans that ensure each supplier is visited exactly once. A
central finding is that the Insertion Heuristic (IH) produces
fewer tours in almost all scenarios compared to the Nearest
Neighbor Heuristic (NNH). On average, IH requires around
half a tour less, which is a side effect of its construction
logic: by inserting suppliers at positions of lowest additional
cost, some routes can be combined more efficiently, leading
to fewer overall tours. Travel times after optimization differ
only marginally between the two heuristics, with average
deviations of less than one percent. This indicates that the
main differences stem from their construction logic.

Notable differences arise in vehicle utilization. It is as-
sumed that each tour is carried out with the smallest feasible
truck type, with an unlimited fleet available. Utilization val-
ues are therefore not optimized directly but serve as com-
parative indicators of tour efficiency. Across all scenarios,
IH achieves higher loading meter utilization, averaging 83%
compared to 69% for the NNH. Weight utilization, in con-
trast, remains low in both approaches (25-39%), reflecting
that loading meters, rather than weight, are the binding ca-
pacity constraint in procurement logistics. However, these
observations are strongly influenced by the characteristics
of the available data and thus also depend on the specific
industry under consideration.

The constraint variants further influence the outcomes.
Extending maximum driving time (Variant B) allows longer
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routes and in some cases reduces the number of tours,
while removing buffers (Variant C) slightly improves uti-
lization values but has limited effect on tour numbers. Over-
all, IH achieved on average 13% higher loading meter uti-
lization and required fewer tours in 14 out of 18 scenar-
ios, while travel times remained nearly identical between
the two methods. For instance, in Dataset II, Variant A, IH
reduced the number of tours from 8 to 7 and increased uti-
lization from 69% to 87%, whereas the corresponding travel
times differed by less than one minute. This underlines that
the observed advantages of IH are consistent across datasets
and not driven by isolated cases. A detailed overview of all
results is provided in Table

7 Conclusion and Outlook

The objective of this study was to develop a tool that can
be applied in practice to optimize inbound routing in pro-
curement logistics. The Nearest Neighbor Heuristic and the
Insertion Heuristic were successfully adapted to the con-
structed Open Vehicle Routing Problem and proved capa-
ble of generating feasible solutions across different scenar-
ios. By testing different datasets and constraint variants, it
was demonstrated that the framework is not limited to a sin-
gle industry but can be applied to various companies with
a broad range of operational requirements. While the ap-
proach does not guarantee optimality, the results indicate
that the Insertion Heuristic often provides more favorable
outcomes in terms of loading meter utilization and tour con-
struction. Both heuristics therefore offer valid solutions that
can serve as a robust baseline for decision-making in prac-
tice. They provide an initial planning baseline which, in op-
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erational use, can be reviewed and adjusted by planners,
for example in light of company-specific requirements, to
incorporate experience-based considerations and short-term
constraints.

The results also highlight that solution quality depends
strongly on the characteristics of the available data and the
specific industry context. In particular, the vehicle utiliza-
tion outcomes are shaped by the assumption of an unlim-
ited fleet of different truck sizes, which simplifies the model
but may not reflect real operational conditions. Future re-
search could address this limitation by introducing con-
straints on fleet availability and by comparing different allo-
cation strategies. Moreover, automated data extraction from
enterprise resource planning or transportation management
systems would be a promising step to support applicability
in practice.

Overall, the study shows that heuristic approaches can
support cost-efficient and feasible inbound routing in pro-
curement logistics. They enable structured use of planning
data and allow integration into operational processes, par-
ticularly when supported by buffer-based scheduling mech-
anisms. While the solutions are designed to be applied di-
rectly, a manual review can complement the results to ac-
count for specific operational insights or situational adjust-
ments.

Future research should explore refinements of the
heuristics to improve solution quality, for example by adapt-
ing termination criteria or by varying starting conditions.
The consideration of multiple objectives such as balancing
distance and vehicle utilization could further enhance the
flexibility of the approach. A relevant extension is the inte-
gration of company-specific fleet structures and limitations,
since the availability of vehicles is often restricted in prac-
tice. In addition, dynamic aspects including order timing,
shipment sizes, and inventory considerations could be incor-
porated to align routing with procurement planning. Finally,
the approach may be extended towards multi-day planning,
recurring time windows, and the integration of regulatory
driving and rest times to better reflect real-world require-
ments.
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