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R eliable self-localization is fundamental to safe and
efficient navigation in autonomous mobile robots
and driverless industrial trucks. However, localization
failures in highly dynamic or feature-poor environments
can lead to safety hazards and costly workflow disrup-
tions. While probabilistic methods such as particle filters
mitigate sensing and actuation uncertainties, they lack
mechanisms to recognize impending failures. To address
this gap, we propose a systematic, physics-based simu-
lation methodology for generating datasets that enable
predictive failure detection. The datasets include local-
ization estimates, ground-truth poses, sensor data, and
automatically labeled failure cases. By systematically in-
troducing challenging conditions, such as dynamic ob-
stacles, featureless areas, and map ambiguities, we pro-
voke diverse failure modes in a reproducible manner.
These datasets establish a scalable foundation for train-
ing models that anticipate localization failures, support-
ing proactive fault detection and enhancing the safety
and reliability of autonomous navigation in complex en-
vironments.

[Keywords: self-localization, predictive monitoring, data-
driven modeling, robotics, machine learning|

1 INTRODUCTION

Localization is a fundamental prerequisite for the naviga-
tion of autonomous mobile robots and driverless industrial
trucks because all higher-level navigation tasks, e.g., path
planning, obstacle avoidance, and mission execution, de-
pend on an accurate estimate of the vehicle’s position and
orientation in its environment. Without reliable localiza-
tion, the robot cannot know where it currently is, which
makes it impossible to determine how to reach its target
safely and efficiently. Different approaches for robot local-
ization exist and are compared in a systematic review in
[1]]. Self-localization is the process of determining a sys-
tem’s position without relying on external infrastructure.
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Self-localization is the process of determining a system’s
position without relying on external infrastructure and is
commonly performed using dead reckoning based on odom-
etry sources, such as wheel encoders or an Inertial Measure-
ment Unit IMU), or by employing range sensors, including
Light Detecting and Ranging (LiDAR) or ultrasonic sen-
sors, as well as camera-based methods. These approaches
are common but not exhaustive, as alternative strategies ex-
ploiting other sensing modalities or data-driven techniques
are also being investigated. During operation, malfunctions
in the localization system can affect the overall behavior of
the mobile robot, potentially jeopardizing operational safety
or workflow continuity. As Thrun et al. note, robotic op-
erating environments are “inherently unpredictable” [2| p.
3]. Probabilistic approaches such as particle filters have be-
come standard in self-localization, as they explicitly account
for uncertainties in actuation and sensing.

However, there are particularly challenging scenarios in
which localization may fail. These localization failures can
occur, for example, due to occlusions in the LiDAR scan or
noise caused by rain or challenging lighting conditions [3]].
Highly dynamic environments, such as public spaces or in-
bound and outbound areas of warehouses, can obscure static
features and degrade visual odometry. Odometry based on
wheel encoders can be inaccurate due to discrepancies be-
tween actual and modeled dimensions, incorrect encoder
readings, and wheel slip. Furthermore, map ambiguities and
featureless areas pose additional challenges.

While uncertainty in automation-compatible environ-
ments is typically low, many real-world environments ex-
hibit greater levels of uncertainty that must be addressed to
ensure reliable localization. One way of addressing these
challenges is by detecting localization failures. To safely
operate in such environments, AMRs are required in spec-
ified accuracy boundaries. Identifying these boundaries as
localization failures allows the robot to perform error cor-
rection behavior, for example, disregarding faulty sensor
readings or correcting localization estimates [4]]. Different
approaches exist for monitoring the integrity of localization
systems. Especially for detecting these failures before they
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occur, data-driven modeling has shown potential [5]]. Us-
ing data-driven models to forecast localization failures is
not a widely explored research topic, and publicly available
datasets or methods for creating datasets are scarce.

Predictive models, capable of anticipating localization
failures before they occur, can improve the safety and
reliability of autonomous navigation. However, predictive
modeling is hindered by the scarcity of datasets contain-
ing failure examples. Existing localization benchmarking
datasets often lack such instances, and forced failure sce-
narios used in some studies are rarely shared or fully docu-
mented, limiting reproducibility. Furthermore, many current
approaches are restricted to domains like autonomous driv-
ing or camera-based systems, and their datasets, methods,
and models cannot be directly applied to particle filter-based
localization approaches using a LIDAR sensor.

Recording datasets containing localization failures in
real-world testbeds presents several challenges. Safety con-
cerns arise when intentionally inducing failure modes in
robotic systems, posing risks to both the environment and
the robot. Moreover, the manual setup and supervision re-
quired for such experiments demand substantial effort, par-
ticularly when simulating realistic scenarios involving dy-
namic obstacles such as pedestrians or moving objects. Ac-
cess to test environments is often limited due to constraints
related to time, space, and concurrent activities at the facil-
ity. Furthermore, infrastructure requirements, such as mo-
tion capture systems used to provide ground truth localiza-
tion, can limit the scalability of data collection. Motion cap-
ture systems are essential for identifying instances of local-
ization failure, but are costly and not always available.

To address the challenges of detecting and predicting
localization failures, this work makes the following contri-
butions: (1) we introduce a systematic process for gener-
ating datasets to train localization monitoring models for
LiDAR-based ground robots, with open-source code and
documentation'f (2) we release publicly available, physics-
based simulation environments tailored for dataset genera-
tion, including a model of the omni-directional robot MoMo
(cf. Figure[T)) [6]l; (3) we propose a domain randomization
technique that injects artificial odometry drift to provoke di-
verse failure modes; and (4) we provide an open dataset for
developing and evaluating predictive models of localization
failure in mobile ground robots [6].

This study focuses on systematically inducing localiza-
tion failures, collecting corresponding data, and automati-
cally labeling samples. Section [2|reviews related work, Sec-
tions[3]and []detail the methodology, and Section[5|presents
the resulting dataset. Feature extraction, learning algorithm
design, and model deployment are beyond the scope of this

paper.

"https://flowcean.me/examples/robot_localization_failure/
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(b) Robot in simulation

Figure 1: Comparison of the MoMo robot in real-world
and simulated environments.

2 RELATED WORK

Detecting, understanding, and anticipating failures in robot
localization systems is critical for ensuring safe and reli-
able autonomous operation. Over the past years, a variety of
approaches have been proposed to detect or mitigate such
failures, ranging from traditional model-based techniques to
modern data-driven methods. This section reviews existing
literature on fault detection and predictive monitoring of lo-
calization systems, with a particular focus on the availabil-
ity of datasets, the applicability of different approaches to
ground robots, and the limitations that motivate the present
study.

Maharmeh et al. survey integrity concepts such as
localization fault detection, which monitor the current state
of the localization system. The model-based approaches in
the study either detect localization failures based on sen-
sor readings, without accounting for potential issues inher-
ent to the localization algorithm itself, or other approaches
included in the study detect localization failures only after
they have occurred [[7]]. At that point, the robot may have al-
ready entered an unrecoverable state or become an obstacle
to faster-moving agents in its environment.
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Another approach is using predictive models that an-
ticipate localization failures before they occur, leveraging
modern data-driven techniques[5]], [8]], [9]. By forecasting
potential localization faults in advance, such models have
the potential to enhance the reliability and safety of au-
tonomous navigation in complex environments. While sev-
eral approaches explore data-driven monitoring of localiza-
tion systems, many are focused on autonomous road vehi-
cles [5], [8]], limited to camera-based localization [9], or do
not evaluate the predictive performance of their models for
future localization states [[10].

Developing effective predictive models requires training
data that includes examples of localization system failures,
i.e., instances in which the estimated pose diverges beyond
acceptable error bounds. However, such data is scarce, espe-
cially for ground robots. Although datasets exist for bench-
marking localization in autonomous driving [11]], [12] and
RGB-D-based SLAM systems [13]], they generally lack an-
notated failure instances. It could be possible to use the ex-
isting benchmarking datasets to test localization algorithms
and collect failure cases, but this would likely result in a
dataset with very few failures. As a result, studies that ad-
dress predictive localization monitoring often intentionally
induce failures by designing scenarios where the localiza-
tion system is bound to fail [9]], [10]. Although prior re-
search has laid a foundation for fault detection and data-
driven monitoring of localization systems, significant gaps
remain in the availability of failure-rich datasets and the de-
velopment of reproducible methods for predictive localiza-
tion monitoring, particularly for ground robots in diverse
environments.

We address these gaps by creating datasets specifically
designed for training models that enable the prediction of
localization failures in mobile ground robots. Our approach
focuses on generating diverse and reproducible failure sce-
narios in simulation, allowing for controlled data collection
without the safety and logistical constraints of real-world
experimentation. By inducing failures, systematic domain
randomization, and annotating failure instances automati-
cally, we provide a scalable and extensible approach for
developing and evaluating data-driven models that forecast
failures in robot localization systems. In doing so, this work
contributes both the methodology and the data necessary
to advance research in proactive fault detection for ground
robot localization.

3 SIMULATION SETUP

To generate a diverse and realistic dataset for training and
evaluating predictive localization models, a comprehensive
simulation setup is created using NVIDIA Isaac Sim. This
setup replicates the physical behavior and sensor outputs of
a real mobile robot operating in dynamic environments. The
simulation framework ensures high fidelity through the use
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of an accurate robot model, configurable scenarios, and re-
producible sensor conditions. The following subsections de-
scribe the robot configuration, the simulated environment,
and the intentional challenges introduced to provoke local-
ization failures.

3.1 ROBOT SETUP

This paper focuses on the commonly used particle
filter-based approach Adaptive Monte Carlo Localization
(AMCL) [14] in combination with a LiDAR and artifi-
cially worsened odometry. The robot used in this study is
the open-source omnidirectional mobile robot MoMo [15]].
For the dataset generation presented in this study, MoMo
is equipped with a VLP-16 Velodyne LiDAR, which pro-
vides data used for precise localization and state estimation.
A digital model of MoMo is created in the Isaac Sim en-
vironment, accurately modeling both the robot’s physical
dimensions and its holonomic kinematics. Figure 1| shows
the robot MoMo at the real-world testbed (Fig. [Ta) and the
simulated robot in Isaac Sim (Fig. [Tb).

Following [[16]], the rollers of the mecanum wheels are
modeled to replicate omnidirectional behavior realistically.
To interface with standard robotics middleware, LiDAR
scans and odometry are published to the ROS ecosystem us-
ing NVIDIA’s Omnigraph system. This setup ensures con-
sistent behavior between simulated and real-world condi-
tions. While a sim-to-real gap is inevitable due to sensor
noise, unmodeled dynamics, and environmental variation,
we aim to minimize it by generating diverse datasets across
a range of challenging scenarios. To support reproducibil-
ity and further research, the Universal Scene Description
(USD) file of the simulation is publicly provided.

3.2 SIMULATION ENVIRONMENT

Simulation is used in this study as a safe, flexible, and re-
producible method for generating data to train and evaluate
predictive models of localization failures. Collecting real-
world data that intentionally includes such failures is often
impractical due to safety concerns, resource constraints, and
the scarcity of datasets containing a sufficient number of
failure cases. Simulated environments enable controlled ex-
perimentation under a wide range of conditions, including
the introduction of artificial noise, dynamic and static ob-
stacles, and various forms of odometry drift. This capability
allows for the systematic creation of diverse failure scenar-
ios, which are essential for developing robust, data-driven
forecasting models for robot localization systems.

The simulation experiments are conducted in six sim-
ple, small-scale environments and one larger, prebuilt ware-
house environment provided by Isaac Sim. The warehouse
setting is selected for its realistic representation of a typi-
cal warehouse, complete with aisles, storage racks, boxes,
and common handling equipment. Its symmetric layout and
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(a) Symmetric map (b) Asymmetric map
Figure 2: Examples of symmetric and asymmetric
occupancy grid maps.

large open spaces mirror characteristics found in real-world
warehouses, where the repetitive structure of aisles and
shelves can cause ambiguity in pose estimation and pose a
challenge for standard localization methods. This symmetry
is deliberately exploited to induce localization confusion,
making the environment particularly well-suited for gener-
ating data aimed at predicting self-localization failures.

To broaden the range of symmetric layouts, three of the
simple environments are designed with symmetric struc-
tures (Figure[2a), while the remaining three are asymmetric
(Figure2b). Using these standardized environments ensures
reproducibility, allowing other researchers to replicate the
presented experiments and extend the work without requir-
ing extensive manual setup of the environment.

3.3 ENVIRONMENTAL CHALLENGES

To capture realistic scenarios that are prone to localization
failures, several environmental challenges are intentionally
introduced into the simulation environment. Dynamic ob-
stacles are introduced using spherical objects that represent
typical moving objects, such as humans, robots, or fork-
lifts, encountered in warehouse environments (cf. Figure E[)
Since localization failures primarily arise from occlusions
in the laser scan rather than the exact geometry of the ob-
structing object, the specific shape of the obstacles is not
critical. Spheres are used due to their computational effi-
ciency and the simplicity of collision handling, while dif-
ferent sizes allow for approximating a variety of moving ob-
jects. The spheres follow randomized trajectories at speeds
ranging from 0.0 m/s to 5.0 m/s, simulating unpredictable
motion patterns. For the current dataset, 35 such spheres
are deployed. To ensure safe interaction during collisions,
the spheres are assigned a low density, allowing them to
be deflected upon contact without impacting the motion
of the robot. Despite minimal physical impact, the spheres
remain fully detectable by the LiDAR sensor, introducing
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Figure 3: Robot and obstacles in a warehouse environment.

perception and localization complexity. Additionally, sev-
eral static obstacles, cubes, cylinders, cones, and spheres
of varying sizes, are manually placed throughout the envi-
ronment. The obstacles are not a part of the navigational
map of the robot, simulating scenarios where unexpected
obstructions occur in operational environments. Their pres-
ence challenges the robot’s perception and localization sys-
tems, making the generated data particularly valuable for
training predictive failure models.

Real-world odometry estimates contain drift due to sen-
sor inaccuracies, mechanical imperfections, and dynamic
movements. The amount of drift in each direction differs
from robot to robot. Using the odometry of only one robot
for dataset generation could lead to poor generalizability
when deploying on a different robot, as the model may
learn patterns in the odometry that are specific to that robot.
For this reason, a domain randomization approach for the
odometry was followed. To include realistic behavior of as
many robots as possible, the ground truth odometry pro-
vided by the Isaac Sim was systematically altered by in-
troducing controlled drift. The drift settings are randomized
throughout the experiments. By generating imperfect odom-
etry data closely resembling real-world sensor outputs, the
datasets enable robust evaluation and enhancement of pre-
dictive models intended for early detection of localization
failures.

In contrast, the LiIDAR sensor data is not randomized in
this simulation. This decision allows us to isolate the effects
of environmental challenges and odometry drift on local-
ization failures, without introducing additional variability
from LiDAR-specific noise, e.g., range inaccuracies or point
cloud distortions. Real-world LiDAR sensors like the VLP-
16 exhibit relatively low and consistent noise levels com-
pared to odometry sources, and the primary failure modes
in this study stem from occlusions and map-related issues
rather than intrinsic sensor errors. Future extensions could
incorporate LiDAR noise randomization to further narrow
the sim-to-real gap.

Figure ] illustrates the artificial odometry drift. To com-
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Figure 4: Artificial Odometry drift.

) T .
pute the drifted pose x§ = [z§ ¢ 6¢] at time step
k, we start with the ground truth poses xit_l and xit, and

the previous drifted pose x§ ;. The drift parameters are €,

€y, and €, representing the drift per meter in the local z-
direction, y-direction, and the change in yaw angle per me-
ter traveled in the local z-direction, respectively. The rota-
tion matrix for transforming coordinates is defined as:
cosf —sinf

R(0) = {sin@ cos 6 } ’ M
where R(6)7' converts from global to local coordinates. The
drifted pose is computed through the following steps: First,
the displacement in the global frame is calculated as the dif-
ference between consecutive ground truth positions:

gt .8t
Aptiy, = {‘”’gt - “grl] : @
Y = Yre—1

This global displacement is transformed into the local frame
of the previous ground truth orientation 6?_1 to align with
the robot’s coordinate system:

Apf, = RO ) AR = |

A‘77r0b:| ) (3)

Ayrob

Note that Ay, = 0 for non-holonomic robots. The drift
amounts 0, d,, dp are defined proportional to the local dis-
placements Az, and Ay, scaled by the drift parameters
in x direction ¢, €, €5 and the drift parameters in y direc-

tion Gz, Gy, G

527 = €x Axrob + C’I‘ : Ayr0b7 (4)
6y = €y Axrob + Cy : Ayroba )
09 = €6 - ATrop + (o - Ayrob- 6)

The local displacement is then adjusted by applying the
drift, scaling the displacements to simulate sensor inaccu-

racies:
Al‘rob + 6w:|

d
Aprob - |:Ayr0b + 53/ (7)
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Figure 5: Comparison of the ground truth trajectory (red)
with artificially drifted odometry data. Two drift models
are shown: one with positive drift parameters (blue) and
one with negative drift parameters (yellow).

The drifted local displacement is transformed back to the
global frame using the previous drifted orientation 6 _:

Apglob = R(0}_1) AP ®)

The drifted position is updated by adding the drifted global
displacement to the previous drifted position:

d d
Tl _ | Tk—1 d
- + AP, 9
[yﬂ] Lfi_l} Piob ©

The change in ground truth orientation is computed as the
difference between consecutive yaw angles:

AGE =05 — 05 . (10)

The drifted orientation is updated by combining the ground
truth orientation change with the drift:

08 = 0% | + AGE 4 5. (11)

For initialization £ = 0 (e.g., when it is the first message),
the ground truth equals the drifted pose:

x§ = x5 (12)

Additionally, Gaussian noise is added to the drifted trajecto-
ries. Figure[5]shows the effect of adding drift to a stream of
ground truth poses for different €, €,, and €. In the figure,
a Gaussian noise is applied with a mean of 4 = Om and a
standard deviation of o = 0.001m.
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The simulation environment thus provides a scalable and
reproducible means of exposing a mobile robot to a diverse
set of realistic and challenging conditions that are known
to trigger localization errors. By carefully designing scenar-
ios that include symmetry, dynamic obstacles, unexpected
occlusions, and imperfect odometry, the simulation ensures
that failure cases occur in a controlled yet varied manner.
This setup is essential for generating meaningful datasets
that support the development of robust, predictive localiza-
tion monitoring models. The following section details how
these datasets are created, structured, and automatically la-
beled to facilitate data-driven modeling.

4 DATASET CREATION

To support the development of predictive localization mon-
itoring systems, this work generates a dataset containing
both successful and failed localization episodes. The dataset
is produced entirely in simulation to ensure safety, repro-
ducibility, and scalability. It includes diverse scenarios with
varying dynamic elements and controlled odometry drift.
This section outlines the data collection pipeline, the dataset
structure, and the method used for automatically labeling
localization failures. Both a digital model of the robot and
multiple simulation environments are used within Isaac Sim
to simulate mobile navigation in cluttered and dynamic
scenes. The robot follows a trajectory consisting of an arbi-
trary number of randomized goals scattered throughout the
environment. Localization failures are induced by moving
spheres that traverse the warehouse, occluding the robot’s
sensors during navigation. These spheres are divided into
three size categories based on their effective diameter deg at
the LiDAR height z (cf. Figure [6). The effective diameter
degr 18 calculated as

() = 2. \/@ - ( - ‘;) (13)

where d is the full sphere diameter and z is the LiDAR
height measured from the bottom of the sphere. Small
spheres, numbering fifteen, have dg in the range of 0.2 m
to 0.5m to simulate humans and small robots; medium
spheres, also fifteen in number, have d.¢ between 0.5m to
1.0m to represent large robots and pallet trucks; and large
spheres, totaling five, have des ranging from 1.0m to 1.5m
to model forklift trucks. This variety of obstacle sizes en-
sures that the dataset captures a realistic range of occlusion
scenarios affecting sensor visibility.

4.1 DATA COLLECTION PROCESS

Recording training datasets that include localization fail-
ures requires a structured and repeatable process to ensure
consistency, reliability, and meaningful data for supervised
learning. Applying the framework introduced in [17], robot
navigation and localization quality evaluation are orches-
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Figure 7: Robot process flow during data collection.

trated using a hierarchical finite state machine. Figure[7] de-
picts the procedure for collecting training samples. A sin-
gle sample lasts from the robot’s initialization to the point
of localization failure. In generate random goal poses, the
randomized trajectory is set. In the localization block, the
robot receives an initial ground truth pose provided by Isaac
Sim, which AMCL uses to estimate the pose of the robot.
After convergence, the robot starts the point-to-point nav-
igation. Simultaneously, the quality of the pose estimation
of AMCL is evaluated. The data is collected in sequences.
If the position or orientation error exceeds the respective re-
set thresholds, ayeser OF Breset, the current sequence is termi-
nated. This reset procedure is employed to prevent AMCL
from entering a state from which it cannot converge. Dur-
ing the reset, the robot halts and AMCL is reinitialized
with an initial pose derived from ground-truth data. In ad-
dition, the drift parameters €, €,, €9, (s, Cy, and (g (see
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Table 1: A list of ROS topics, their message types, and descriptions.

/heading_error std_msgs/msg/Float32
/map
/momo/pose
/particle_cloud

/position_error std_msgs/msg/Float32

nav_msgs/msg/OccupancyGrid
geometry_msgs/msg/PoseStamped
nav2_msgs/msg/ParticleCloud

ROS Topic ROS Message Type Description
/amcl_pose geometry_msgs/msg/PoseWithCovarianceStamped estimated pose by AMCL
/delocalizations std_msgs/msg/Int16 localization failure counter

orientation error
environment map
ground truth pose
particle set of AMCL
position error

Section[3.3)) are randomized to mitigate the sim-to-real gap.
The drift parameters are varied by randomly sampling val-
ues within the range 0.25 to 0.35. The range is chosen such
that, in the absence of obstacles, no localization failures are
observed, consistent with the expected behavior of a well-
localized robot. Following this procedure, the subsequent
training sample is recorded.

A comprehensive overview of all data included in a
training sample is provided in Table [I] The experimental
data are stored in a rosbag, the Robot Operating System
(ROS) standard file format for recording and storing time-
synchronized message sequences.

To ensure temporal consistency across heterogeneous
sensor streams, all recorded messages are aligned to a com-
mon time axis using a zero-order hold (ZOH) transforma-
tion. In this process, each signal is discretized at the tar-
get sampling frequency by carrying forward the most re-
cently observed value until a new message becomes avail-
able. This approach preserves the step-wise nature of asyn-
chronous sensor updates while avoiding artificial interpola-
tion of values that may not be physically meaningful. The
ZOH transformation guarantees that every training sample
is represented as a complete, synchronized feature vector,
which is a prerequisite for learning models that operate on
tabular time-series data.

In total, the dataset was collected across seven distinct
maps: three small symmetric layouts, three small asymmet-
ric layouts, and one large warehouse environment. For each
map, experiments were conducted under three obstacle con-
figurations: static only, dynamic only, and combined static
and dynamic. This results in 7 x 3 = 21 unique experiment
runs. Each run lasted 15 min of simulation time, although
the corresponding rosbag recordings are shorter due to the
difference between simulated and real time, and contained
a varying number of resets, corresponding to the number of
recorded sequences within that experiment. This variation
reflects the influence of both map geometry and obstacle
configuration on localization robustness.
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4.2 AUTOMATIC LABELING FOR CLASSIFICATION

After experiment data is collected in rosbag files, the files
need to be loaded into a machine learning pipeline. We are
using Flowcean [18]], a framework that provides a higher-
level abstraction to generalize the learning and modeling ap-
proach. Flowcean includes an interface to load experiment
data from rosbag and convert it into a tabular dataset.

Training samples are classified with a label y indicating
if the localization is failing or not. The classification is eval-
uated by comparing the estimated pose (23, y™', 67) with
the ground truth (=, y5, 65 ) and evaluating the localization
quality thresholds « and (3, similar to [10]. A localization

failure occurs if
_ 0,if Ap <aNAO < (14)
1, else.

where Ap and A6 define the position and orientation error
given by

Ap= /(e =+ 0 )% (9
20 = 165 — 03], (16)

In our experiments, « = 0.4 m and 8 = 0.4 rad. The choice
of error thresholds is use case-specific and can be deter-
mined methodically [[19]]. It should be noted that o < ugeget
and 3 < Breser- This separation between labeling thresholds
and reset thresholds ensures that the system can still accu-
mulate data from borderline states, those where localization
is inaccurate but not yet reset. As a result, more samples are
labeled as failures before the system intervenes to reset lo-
calization. This allows for a better representation of failure
cases, avoiding a skewed dataset dominated by successful
localization episodes. This ensures a more even distribution
of positively (failure) and negatively (non-failure) labeled
samples, which is essential for supervised learning algo-
rithms to effectively distinguish between normal and failure
states.

In summary, this section has detailed how raw exper-
iment data is transformed into structured, labeled training
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samples. By automatically identifying failure cases based
on pose estimation errors and using conservative thresholds,
the dataset provides a balanced foundation for training clas-
sification models to detect localization failures.

5 RESULTS

The created datasets consist of synchronized streams of lo-
calization estimates, ground-truth poses, sensor measure-
ments, and the corresponding label, either nominal (y = 0)
or failure (y = 1). Multiple challenging navigation scenar-
ios are recorded, including dynamic obstacle interactions,
feature-poor zones, and map ambiguities. Table 2] summa-
rizes key statistics for the full collection of experiment runs
as well as breakdowns by nominal (no failure) and failure
cases.

After aligning the data streams with a ZOH transforma-
tion (cf. Section A1), the resulting number of samples is
summarized in Table [2| Across all maps and experiment
variations, the dataset contains a total of 417 185 labeled
samples, with 320 870 nominal and 96 315 failure instances,
corresponding to an overall failure rate of 23.1 %. Although
this distribution of labels is unbalanced (about 1:3.4), this
can be handled, e.g., by undersampling the majority-class
(y=0) or oversampling the minority-class (y=1) [20, pp.
217-218].

A breakdown by environment shows that the occurrence
of failures varies across scenarios, but no clear, consis-
tent trends emerge regarding the impact of map symmetry
or obstacle types. In symmetric environments, failure rates
range from 9.1 % to 37.0 % in asymmetric layouts, they span
10.1 % to 34.8 %. The warehouse map exhibits intermediate
rates (19.1 % to 28.8 %). This variability may be attributed
to the domain randomization approach applied to odome-
try drift parameters (e, €y, €9, Gz, Cy, Cp), Which are reset
and randomized after each localization failure (as described
in Section [3.3). By introducing artificial drift and Gaussian
noise in a randomized manner, the simulation ensures diver-
sity in odometry quality, but this also introduces additional
noise that can mask potential patterns tied to environmental
factors such as geometry, dynamic obstacles, or static clut-
ter.

As described in Section[4.1] the localization is reset once
one of the reset thresholds is violated. The number of re-
sets required during experiments provides some insight into
scenario difficulty, with higher reset counts often (but not al-
ways) aligning with elevated failure rates. For instance, runs
in symmetric map 2 and asymmetric map 2 show substantial
variation, but these do not form a predictable pattern across
all experiments. Overall, the lack of discernible trends un-
derscores the complexity introduced by randomized odome-
try degradation, which simulates real-world sensor variabil-
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ity but complicates the isolation of specific environmental
effects.

Taken together, these results indicate that the dataset
captures a diverse set of failure-inducing conditions, even
if underlying trends are obscured by odometry randomiza-
tion. While the class distribution is reasonably balanced for
training purposes, careful handling of imbalance (e.g., class
weighting or resampling) will be necessary to avoid bias to-
ward the dominant nominal class. Furthermore, the diver-
sity across maps allows for evaluating generalization: mod-
els trained in one environment can be tested in structurally
different settings to assess robustness.

6 CONCLUSION

This work investigates the problem of making self-
localization in autonomous mobile robots more robust by
providing a systematic way to generate failure-rich datasets.
The simulation-based methodology shows that under chal-
lenging conditions, e.g., dynamic obstacles, ambiguous
maps, and randomized odometry drift, the resulting datasets
maintain a moderate imbalance between nominal and fail-
ure labels. This indicates that the induced localization fail-
ures are diverse enough to serve as a basis for data-driven
monitoring, while still resembling conditions in which lo-
calization systems operate in practice.

The approach is reproducible and scalable: localization
failures can be provoked in a controlled manner, ground
truth and estimated poses can be recorded, and the system
can be reset automatically. This enables the collection of
large datasets without safety concerns or extensive manual
effort. Several aspects could be improved, including the use
of more realistic maps, the inclusion of sim-to-real sensor
noise, and ultimately the collection of real-world data to
close the gap between simulation and deployment.

Although the present study focuses on LiDAR-based
particle filter localization, the methodology is in principle
generalizable. Forcing localization failures and recording
labeled recovery sequences can also be applied to other
localization methods, such as visual odometry or multi-
sensor fusion. Extending the simulation setup with addi-
tional sensing modalities, for example, cameras or depth
sensors, would make it possible to evaluate alternative lo-
calization strategies. The dataset presented here, however,
is primarily applicable to LiDAR-based systems.

The contributions establish a scalable groundwork for
anticipating localization failures and for improving the
safety, reliability, and efficiency of autonomous navigation
in dynamic environments. The open-sourcing of code, doc-
umentation, simulation environments (including the omni-
directional robot model), and datasets enables the robotics
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Exp. Map Dynamic Static Resets Samples Nominal (y=0) Failure (y=1) Failure Rate
1 warehouse v v 10 15708 11171 4537 28.8 %
2 warehouse v X 9 17188 13899 3289 19.1 %
3 warehouse X v 15 18 693 13570 5123 27.4 %
4 symmetric 1 v v 6 14891 12713 2178 14.6 %
5 symmetric 1 v X 5 14729 12770 1959 13.3%
6 symmetric 1 X v 18723 15947 2776 14.8 %
7 symmetric 2 v v 8 22909 17342 5567 24.3 %
8 symmetric 2 v X 12 22381 14 106 8275 37.0%
9 symmetric 2 X v 6 18364 16 690 1674 9.1%
10 symmetric 3 v v 13 22893 18033 4860 21.2%
11 symmetric 3 4 X 15 23754 17572 6182 26.0%
12 symmetric 3 X v 10 19394 15625 3769 19.4 %
13 asymmetric 1 v v 11 22623 16 889 5734 25.3%
14 asymmetric 1 v X 10 24621 17315 7306 30.0 %
15  asymmetric 1 X v 12 23350 19560 3790 16.2 %
16  asymmetric 2 v v 9 21165 14652 6513 30.8 %
17  asymmetric 2 v X 4 14548 13071 1477 10.1 %
18  asymmetric 2 X v 16 24468 15963 8505 34.8 %
19  asymmetric 3 v v 10 18788 13435 5353 28.5%
20  asymmetric 3 v X 11 18767 14 662 4105 21.9%
21  asymmetric 3 X v 10 19228 15885 3343 17.4 %

Total: 417185 320870 96315 23.1%
community to replicate, extend, and benchmark predictive REFERENCES

monitoring approaches.

Future work will address feature engineering from these
datasets, the design and validation of predictive algorithms
that integrate temporal and semantic sensor data, and their
deployment in real-time robotic systems. Such develop-
ments would support proactive interventions, including sen-
sor data filtering, pose correction, or adaptive path replan-
ning, to reduce disruptions and improve autonomy in uncer-
tain environments.
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