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P allets are one of the most important load carriers
for international supply chains. Yet, continuously

tracking activities such as Driving, Lifting or Standing
along their life cycle is hardly possible. This contribu-
tion is the first to propose a taxonomy for sensor-based
activity recognition of pallets. Different types of accel-
eration sensors are deployed in three logistical scenar-
ios for creating a benchmark dataset. A random forest
classifier is deployed for supervised learning. The results
demonstrate that automated, sensor-based life cycle as-
sessment based on the proposed taxonomy is feasible.
All data and corresponding videos are published in the
SPARL dataset [1].
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1 INTRODUCTION

Studies assume a loss of millions of pallets every year in
Europe alone [2]. Beyond that, an unknown number of
pallets is destroyed or disposed. Furthermore, more than
100 million Euro pallets were produced in 2022, showing
a growth of around 8 % more produced pallets compared
to 2021. The production of new pallets is at an all-time
high. The average lifespan of a Euro pallet is about seven
years [3]. Both the number of recycled pallets and the aver-
age service life continue to increase [4]. Industry demands
longevity of the pallets. Repairs have lower CO2 emissions
than newly produced units [5], making repairs the preferred
option for the vision of a circular economy [6].

Tracking and analyzing pallets life cycles can help pro-
longing them, which in turn could help reducing the car-
bon footprint. Less pallets would need to be manufactured
or disposed. However, the incomplete flow of information

along a pallet’s life cycle results in a lack of traceability
of its processes and estimated duration of use. The lack of
information within supply chains is due to the heterogene-
ity of deployed technologies, as well as missing data acqui-
sition from the pallet as a source. Industry shifts towards
smart objects within Industry 4.0, and companies seek to
evolve their systems to record data along the entire life cy-
cle of a product. [7] An automated sensor-based recognition
of pallet activities is imperative to track activities along the
supply chain. In the state of the art, there is no shared un-
derstanding of pallet activities in logistics and therefore no
methodology for activity recognition. A taxonomy provides
this understanding as it defines the set of activity categories
to be recognized by a classifier.

The goal of this paper is to create a taxonomy of classes
for sensor-based activity recognition of pallets. In this con-
tribution, we focus on warehousing activities. We seek to
evaluate the taxonomy’s practical applicability by experi-
mentation in real-world scenarios.

Apart from the taxonomy and experimentation with a
classifier for sensor-based activity recognition, this paper
contributes a new dataset. A previous version of the dataset
can be found in [8] SPARL [1] includes recordings from
three logistical scenarios. A total of 20 recordings with a
total length of 50.5 minutes were created with five differ-
ent accelerometers at sampling rates of 50 to 100,000 Hz.
All recordings were documented with cameras from three
angles and all frames were annotated with the correspond-
ing activity labels. The SARA tool used for annotating the
data is available online [9]. The automated recognition of
the activities is performed using a random forest times se-
ries classification model.

The structure for the paper is as follows: The next sec-
tion will discuss the related work, followed by a description
of the methodology. The fourth section explains the experi-
mental results which, followed by a discussion and a presen-
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tation of the resulting taxonomy of pallet activities. Finally,
the results are discussed in the conclusion.

2 RELATED WORK

The related work is divided into the sub chapters of activity
recognition in logistics and environmental aspects.

2.1 ACTIVITY RECOGNITION IN LOGISTICS

Activity Recognition (AR) describes the process of moni-
toring humans or objects, deriving information about their
actions, analyzing it and classifying it into activities. A
prominent sub domain is human activity recognition (HAR)
which is relevant in many applications like logistics [10],
healthcare [11] and sports [12]. The rising interest in HAR
is based on recent technological advancements, in particular
in sensor technology and machine learning. In logistics con-
texts environmental concerns, stress and strain of employ-
ees, increasing performance requirements as well as rising
costs are dominant domain problems [13, 14].

In addition to HAR, another sub domain is object activ-
ity recognition. Sensors are placed on relevant objects that
are being handled humans or machinery. The research do-
main of object activity recognition is significantly smaller
than HAR. For pallets, research tends to focus on tracking in
terms of temperature deviations or location [15, 16, 17, 18].
In [19] the authors work on sensor-based pallets and develop
a system to monitor humidity and temperature in the sur-
rounding environment to make assumptions about the state
of the transported food. There are many commercially avail-
able sensors that can track objects, their temperature and
impacts based on an event threshold, such as [20] and [21].

Regarding the sensors used for monitoring and deriving
data, AR can be divided into two approaches: vision-based
and sensor-based AR. To gather the relevant data in this
field, humans or objects perform various tasks and actions
while being monitored either via cameras, infrared, mark-
ers, inertial measurement units (IMUs), or other technolog-
ical measurement systems or a combination of these differ-
ent sensors [22]. The analysis process for this type of data
includes movement segmentation, annotation or movement
tracking c. f. [23].

The quality of AR is substantially influenced by the sen-
sor configuration and the corresponding power supply. For
the latter, research evaluated solar powered sensors, batter-
ies and plug connections. [19]. Furthermore, [24] state that
a sensor’s characteristics and features, such as sensitivity,
range or the integrated sensory system, need to be consid-
ered and tested, to facilitate replicability to develop a re-
liable and non-application-specific model. DIN EN 15433
[25] provides guidelines to achieve standardized data sets
derived from sensor technology for mechanical-dynamic

transportation load, which can enhance research in the field.
It contains basic requirements for the sensors, such as be-
ing equipped with three accelerometers arranged at 90° to
each other, as well as for data acquisition. Furthermore it
contains instructions on recording and data analysis. Sensor
data can have an influence on standards and test procedures
in logistics, for example the DIN [26] and ista 3h [27].

To create activity classification models, research shows
an extensive list of options such as random forest, decision
trees, to name a few. Recently, deep learning architectures
are increasingly being used for classification such as convo-
lutional neural networks and transformer architectures [28]
The selection of a suitable model depends on the recorded
sensor data. In addition to the selection of the sensor and
the model to be trained, the training material must be suf-
ficiently good. The research community strives to achieve
best practices in dataset creation for various applications.
Yet, guidelines and tutorials for this aspect are sparse [29].
To address the problem of insufficient training material,
transfer learning methods were used in [30, 31, 32]. Here,
a model is first trained on data from a related problem and
then transferred to the actual problem – possibly with an
adaptation step.

Another approach to remedy insufficient training mate-
rial is the use of experimental design. While efficient plan-
ning of experiments in relation to statistical modeling in the
sense of classical statistical models is an established method
[33], it has not yet been used for the precise adaptation of
random forest classifiers or even neural networks in activity
recognition. In general, the focus of neural network adapta-
tion is on the best possible tuning parameters or importance
sampling, which is more concerned with the skillful selec-
tion of subsets of the entire data set [34]. The determination
of optimal test plans for neural networks was more of theo-
retical interest, c. f. [35]. On the whole, experimental design
has received little attention in the field of machine learning,
even though it can lead to better results, as explained in [36].

2.2 ENVIRONMENTAL ASPECTS

Logistics operations seek opportunities for savings and ef-
ficiency improvements in terms of CO2 emissions. [37]
Sustainable topics such as the circular economy are also
widespread in research. The focus here is on closing the cy-
cle of materials and resources in the product. [38] These
movements towards sustainability are being driven not least
by legal regulations such as the Packaging and Packag-
ing Waste Regulation (PPWR) [39]. A neglected issue is
the consideration of load carriers such as pallets. Never-
theless, the topic of pallet management has grown in pub-
lished papers in recent years [40]. There is also a connec-
tion between economic and technical focal points, the fo-
cus here is also on the environmental aspects, in particular
on life cycle assessment and carbon footprint estimations.
Life cycle assessment or life cycle analysis according to
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DIN EN ISO 14040 or 14044 is used to evaluate the poten-
tial environmental impacts of a product system over its en-
tire life cycle. There are four stages: defining objectives and
scope, inventorying, impact assessment and assessment. If
there is no impact assessment, the study is called a life cy-
cle inventory. [41] In logistics [5] and [42] e. g. assess the
carbon footprints of wooden and plastic pallets, conclud-
ing that wooden pallets are more environmentally friendly
than their artificial counterpart. Prolonging a plastic pallet’s
life by a more cautious usage can reduce the environmen-
tal impact of plastic pallets, as incineration has to be carried
out less frequently. The carbon footprint for wooden pallets
can be reduced through more frequent repairs that avoid in-
creased production of pallets. Burning wooden pallets for
energy production at the end of their life can reduce the re-
sulting CO2 balance. This creates a considerable advantage
over plastic pallets. [5] A common concept among load car-
riers is pooling. A closed pooling system guarantees multi-
ple use of the load carriers, as the users borrow them and the
pooling company is responsible for their management. The
multiple utilization approach is already sustainable, but data
gaps and anomalies mean that not all movements, types of
use or even misuse can be identified, which leaves room for
improvement. [43, 44] The assessment of life cycles is de-
pending on data, which is often unavailable when it comes
to the movement and handling of pallets. The gap described,
as well as the upcoming opportunity towards automated and
dynamic life cycle assessments [45, 46], motivates our con-
tribution.

3 METHOD

The following section describes the logistical scenarios con-
sidered in our experiments, the recording process and the
description of the annotation. The approach is adopted from
the tutorial as described in [29].

3.1 LOGISTICAL SCENARIOS

The scenarios are based on conventional processes from
real-world facilities. To this end, three scenarios were cre-
ated with domain experts from Fraunhofer IML. They repre-
sent common situations in a warehouse. The scenarios were
recreated in the laboratory at Fraunhofer IML to create a
representative environment. The following scenarios were
set up:

1. Wrapping a pallet and handing it over to a conveyor sys-
tem,

2. Putting various goods onto a pallet,

3. Load and unload a full pallet in a pallet rack.

The first scenario can occur in an outgoing goods depart-
ment, for example, and is shown in Fig. 1. The fully loaded
pallet is picked up by a forklift truck and moved onto the

Table 1: Used sensors for recording sessions

Sensor Manufacturer Sampling rate
MSR 145 MSR Electronics 50 Hz
MetaMotionS MBIENTLAB 100 Hz
MPU6000 Ivensense 1,000 Hz
LSM303D STMicroelectronics 1,000 Hz
PCE-VDL 24I PCE Instruments 1,600 Hz
8763B500 Kistler Instrumente 100,000 Hz

semi-automatic pallet wrapper (I). The pallet wrapper has
a turntable with internal stretch foil carriage. The pallet is
then prepared on the wrapper by attaching the stretch film
to the pallet block. The pallet is then wrapped. The wrapped
pallet is picked up by the forklift truck and placed on a
transfer point (II), where the pallet is picked up by an elec-
tric pallet truck and placed on a conveyor (III). The pallet
moves along this to the end of the conveyor where the sce-
nario ends. The second scenario describes a picking process
on a pallet, for example for a business to business delivery,
see Fig. 2. In the initial state, the pallet is half-loaded and is
picked up with a pallet truck and moved into a pallet rack.
Goods are then picked from several pallets in the rack and
loaded onto the pallet. The pallet is moved from picking
station to picking station (I)-(IV). Finally, the loaded pallet
is moved to its starting location, where the scenario ends.
The last scenario shows a storage and retrieval process of
a loaded pallet as it can happen between inbound and out-
bound. A fully loaded and wrapped pallet is moved into a
pallet rack with a pallet truck and stored in an empty space
on the first level (I). The forks are lowered and moved out so
that the pallet truck no longer touches the pallet (II). After a
short pause, the pallet is removed again and returned to its
starting point. The process can be seen in Fig 3.

3.2 RECORDING SESSIONS

The recordings were created with five different accelera-
tion sensors and documented with three different cameras.
These were placed in a 3D printed pallet block. For this pur-
pose, the existing middle wooden block was replaced with
the sensor block. The following sensor configurations were
used:

The MPU6000 and LSM303D sensors are build in a
PX4FMU flight control board from Holybro. This board
has also two gyroscopes (MPU6000 from Ivensense and the
L3GD20 from STMicroelectronics) which are not consid-
ered further. Both recorded with 1,000 Hz. The 8763B500
from Kistler was used in combination with a 5512A mod-
ule of the KiDAQ data acquisition system from Kistler. To
start the recordings, it was necessary to ensure that access
to the sensors was available. Four of the sensors had to be
started by cable connection or by pressing a button. In addi-
tion, an external power supply had to be provided for two of
the sensors. Only the MetaMotionS sensor could be started
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Figure 1: Sequence of the first scenario

Figure 2: Sequence of the second scenario

Figure 3: Sequence of the third scenario

Figure 4: 3D printed pallet block containing the sensors
(left) and power supply container with cable management
(right)

wirelessly via mobile app. The cable guides and power sup-
ply were stowed in a small load carrier on the pallet. This
box was on the pallet at all times during the recording. The
3D printed pallet block and the sensor box can be seen in
Fig. 4. The videos were recorded with three Logitech Mevo
Start cameras, that were synchronized with each other via
a mobile app. It should be noted that two recordings may
be slightly out of sync for network reasons. The arrange-
ment of the camera angles can be seen in Fig. 1, 2 and 3.
The frames of the videos were then annotated and labeled
with the Sequence Attribute Retrieval Annotator (SARA),
which can be found under [9]. In order to synchronize the
annotated frames with the time series of the sensors, a syn-
chronization movement was performed in each recording.
This was done by hitting a pallet block three times with a
hammer at the beginning and the end of the record. The
hammer hits are visible in the video recordings and in the
time series of the sensor data. The following pipeline has
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been defined to start and end each recording according to
the same sequence: In the first step, the pallet was lifted at
the predetermined starting point of the scenario using the
pallet truck so that the sensor installed in the pallet block
could be started at the press of a button. The pallet is then
lowered and the remaining sensors are started using a lap-
top. At the same time, the last sensor is started via app.
When all the experimenters have left the viewing angle of
the cameras, they are started. The person carrying out the
test begins with the synchronization and then the actual se-
quence of the scenario is carried out as described in section
3.1. After the scenario, synchronization is repeated and the
camera recordings and all sensor recordings are ended. Fi-
nally, the starting position is restored by returning the pallet
to its starting point. In scenario 1, the wrapped film was re-
moved and in scenario 2, the picked goods were put back
in place. Scenario 1 was carried out at the Fraunhofer IML
packaging laboratory. In total, it was repeated twice by
two people, resulting in four recordings. The persons car-
rying out the test regularly operate a forklift truck or pallet
truck. They did not know what the measurement was about
and were only asked to perform the scenario. They were
also asked to remain as constant as possible in their move-
ments during the second recording. The pallet used had a
total weight of 595 kg. This is made up of 24 containers
with the dimensions 600 mm * 400 mm * 200 mm, each
weighing 20.5 kg, and four containers with the dimensions
600 mm * 400 mm * 300 mm, which also weigh 20.5 kg.
One of these containers contains the cable management
and power supply. The weight of the other boxes is based
on that of the sensor box. All load carriers used are stan-
dardized according to DIN 55423 [47]. The pallet used
has a tare weight of 21 kg. Scenario 2 was carried out
in the application hall of the Fraunhofer IML, which is
characterized by having a single-aisle pallet rack. A to-
tal of 12 recordings were carried out by two other people.
Eight full water crates were picked in the first four rounds,
four crates measuring 600 mm * 400 mm * 200 mm were
picked in rounds five to eight and four cartons measuring
370 mm * 370 mm * 370 mm were picked in the last four
rounds. The water crates have a tare weight of 13.6 kg, the
load carriers were brought to a weight of 10 kg with sacks
and the cartons weigh 2 kg each. Each picking cycle was re-
peated twice and by two people. In the third scenario, four
passes were also made at the pallet rack. The same people
from scenario 2 stored and retrieved the pallet twice. As in
scenario 1, the pallet weighed 595 kg.

3.3 ANNOTATION

After completing the recordings, classes were defined for
the annotation, which result from the sequence of scenarios.
The classes were created as granular as possible so that a
possible combination of different classes is possible in the
future. The classes were defined semantically from the lo-
gistical application. The following classes were defined for
the annotation:

Table 2: Class labels for annotation process

1 Wrapping 10 Docking
2 Wrapping (preparation) 11 Undocking
3 Driving (straight) 12 Standing
4 Driving (curve) 13 Loading
5 Lifting (raising) 14 Unloading
6 Lifting (lowering) 15 Rotation
7 Lifting (tilting) 16 Error
8 Lifting and Driving 17 Synchronization
9 Forks (entering or leav-

ing the pallet)
18 None

Figure 5: Excerpt of a scenario and comparison of the time
series to video frames

The handling device and the item being used were labeled
simultaneously. The following handling devices were la-
beled: High lift truck, low lift truck, forklift truck and roller
conveyor. The list of items contains small load carrier, card-
board box, other container and no loading. The None class
was used to mark segments outside the scenario. Error con-
tains faulty images. The Rotation class was used for the ini-
tial scanning process of the pallet during the pallet wrapping
in scenario 1. The manual marking of the video frames now
makes it possible to analyze the IMU time series. A formal
description of the pallet activities and thus a taxonomy is
derived from this in section 5. Figure 5 shows an example
of two labeled sensor time series in comparison to the video
frame.
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4 EXPERIMENTAL ANALYSIS AND RESULTS

We have captured 20 recording units per sensor which we
will refer to as data sets in this section. Each of these raw
data sets contains the sensor measurements of one experi-
ment in four attributes: a time stamp and acceleration in-
formation in x-, y- and z-direction. Each time point can be
assigned to one activity class. Excluding the classes Syn-
chronization, None and Error which are not considered for
activity recognition and prediction, the data consists of more
than 50 minutes of sensor measurements belonging to 13
activity classes. Table 3 displays information about the pres-
ence of the activity classes in each of the scenarios. Only the
classes Driving (curve), Driving (straight), Lifting (lower-
ing), Lifting (raising) and Standing are present in all scenar-
ios. The classes Driving (curve), Driving (straight), Stand-
ing and Wrapping are majority classes across all scenarios.
The classes Lifting and Driving, Lifting (tilting), Docking,
Wrapping (preparation), Rotation and Loading are minor-
ity classes across all scenarios.

As data reprocessing, the following operations were ap-
plied to each data set of each sensor. The acceleration data
was transformed to have median value 0 across all time
points of one experiment. To generate features for each time
point t in the data set, the sensor measurements from 0.5
seconds before t until t were used. All sensor measurements
within the time window [t − 0.5, t] were used regardless of
whether their activity class matches the activity class of time
point t. In the time window, for each sensor component (x,
y, z), quantiles of the original and the absolute sensor data
were computed as measures of central and non-central ten-
dency. Differences between these quantiles were calculated
as measures of spread. Other popular measures of spread
were also computed. In total, 210 features are created. For
time points during the first 0.5 seconds of each experiment,
the features could not be computed because there exists no
complete 0.5-second time window. Therefore, these obser-
vations were only used for the computation of feature values
for subsequent time points.

Random forest [48] was employed for predicting the
activity classes. To account for class imbalance, the sam-
pling of observations for tree creation was performed in a
weighted fashion: each observation (corresponding to one
time point) was drawn with a probability inverse propor-
tional to the size of the respective activity class. To estimate
the classification performance of the random forest unbi-
asedly, we combined 19 data sets to train a random forest
model and evaluated this model’s predictions on the left-out
data set. For memory reasons, we maximally used 100,000
observations per class in the training data and selected these
at random if applicable. We repeated this procedure 20 times
so that each data set was used for predicting once.

First, we analyze if the activity classes are predicted
correctly. Figure 7 presents confusion matrices aggregating

the classification performance of the random forest models
across all experiments and sensors. The diagonal in the left
matrix displays the recall values, the diagonal in the right
matrix the precision values. The majority classes Driving
(curve), Driving (straight), Standing and Wrapping as well
as the minority class Loading can be predicted well. The
recall and precision values of the classes Lifting (lowering)
and Lifting (raising) are acceptable. The two largest classes
Standing and Driving (straight) are often obtained as pre-
dictions for observations of smaller classes. The classes de-
scribing activities applied to a standing pallet (e.g., Dock-
ing, Forks entering or leaving the pallet, Wrapping (prepa-
ration)) are often misclassified as Standing. All driving and
lifting and classes have a notable frequency of being mis-
classified as Driving (straight). Also, there exist confusions
within the group of driving classes and within the group of
lifting classes. This motivates combining groups of classes
describing similar activities into super classes as presented
in Figure 6.

Figure 6: Proposed taxonomy and second annotation level
for the description of pallet activities

The prediction results of the random forest models can
be transformed into super class predictions. This means that
the super class predictions are obtained from the models
trained on the data with original classes labels. Figure 8
displays the classification performance of the random forest
models comparing the predicted and true super classes anal-
ogously to Figure 7. Here, high recall and precision values
can be observed for all super classes. Nevertheless, some
confusions between Lifting and Driving as well as between
Standing and Loading still exist.

The results presented in the confusion matrices were ag-
gregated over all experiments and sensors. Figure 10 shows
the F1 scores for predicting the activity super classes sep-
arately for each sensor and scenario. We observe that the
classes Driving and Standing can be recognized very well
based on all sensors and in all scenarios. Observations be-
longing to classes Lifting and Driving can be classified best
for prediction data sets from scenario 2. This could be be-
cause there are more recordings for scenario 2 than for sce-
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Table 3: For each scenario, the number of experiments, the total duration of all experiments (only the parts used for
modeling later on) and the proportion of sensor measurements belonging to each of the activity classes is displayed. All
values are rounded to integers.
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Figure 7: Confusion matrices for all activity classes averaged across all experiments and sensors. The entry in row i and
column j represents
left: . . . the proportion (observations with true class i and predicted class j) / (observations with true class i).
right: . . . the proportion (observations with true class i and predicted class j) / (observations with predicted class j).
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Figure 8: Confusion matrices for the super classes averaged across all experiments and sensors. The entry in row i and
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left: . . . the proportion (observations with true class i and predicted class j) / (observations with true class i).
right: . . . the proportion (observations with true class i and predicted class j) / (observations with predicted class j).

narios 1 and 3. Hence, leaving out one of the recordings of
scenario 2 for training takes away less information about
the specific scenario. Also, the recordings of scenario 2 are
much shorter than the other ones, resulting in a larger train-
ing data set when one recording of scenario 2 is left out for
training. The classes Wrapping and Loading both only oc-
cur in one of the scenarios. Most sensors yield random forest
models with similar performance for a certain class. The re-
sults achieved with sensor MSR 145 are always among the
best.

Our last analysis focuses on the data used for training
the random forest models. We compare our previously de-
scribed approach of using all data sets except the prediction
data set, that is, data sets obtained from different scenarios,
for training the random forest model to an alternative ap-
proach where only the remaining data sets from the same
scenario are used. Figure 9 presents the difference in F1
score between the two approaches when predicting on the
same data set. We observe that the performance of the mod-
els trained on data from all scenarios is slightly lower than
the performance of the models trained on the data of the
same scenarios. The lower prediction accuracy for the cross-
scenario model is expected here, because this model incor-
porates more classes (and therefore can predict classes that
do not occur in a certain scenario). In particular, the cross-
scenario model generalizes more and hence focuses less on
the specifics of a certain scenario. The amount of predictive
performance that is traded for a more generally applicable
model is, however, very small. In some experiments, espe-
cially for the minority classes occurring in different scenar-
ios, the classification performance of some classes can even

be improved by incorporating data from different scenarios
for specific sensors (e.g. LSM303D Loading).

5 DISCUSSION OF EXPERIMENTAL RESULTS

When analyzing the sensor data, it was noticed that the ma-
jority of the data from the PCE sensor is incomplete or con-
tains gaps. The sensor recordings were therefore not ana-
lyzed further. One recording from the MetaMotionS sensor
also contains gaps. Accordingly, only 19 recordings could
be considered for the analysis. The gyroscope data of the
flight controller board was not taken into account. All data,
with the exception of the PCE sensor recordings, can be
found in [1]. In order to process the recordings of the Kistler
sensor, which were recorded at 100 kHz, they were down-
sampled to 5 kHz and 20 kHz using a lowpass forward-
backward filter according to [49]. The 5 kHz data from the
sensor was used for the analyses. At higher sampling rates,
the available resources reach their limits from a technical
point of view. As a result, the data from the sensor is lim-
ited in the interpretation of the results and the full potential
cannot be utilized at this point. An evaluation of the full
100 kHz will be carried out in the future.

When looking at the recognition performance across all
classes, it is noticeable that low scores are achieved for the
minority classes. Majority classes provide more reliable re-
sults, see section 4. In creating the annotation scheme, a
conscious decision was made to use fine-grained classes.
The classes were derived from the requirements of the lo-
gistics and from the observations of the video recordings.
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Figure 9: Boxplots of the F1 scores for predicting the activity super classes with a random forest model based on data
belonging to the same scenario as the prediction data set or belonging to all scenarios. Positive values indicate that a
model trained on all data sets (except the prediction data set) performs better on this data set than a model trained only on
the other data sets from the same scenario.

For example, picking up and setting down the pallet is di-
vided into the classes Docking, Undocking and Forks enter-
ing or leaving the pallet. This subdivision is used to see in
retrospect whether recognition is possible. The results show
that the classes achieve low performance or cannot even be
annotated. Therefore, classes were merged to achieve bet-
ter results. The classes presented here represent a first data-
driven taxonomy and thus combine the requirements from
the application and the results from the experiments Fig. 6
shows the merged classes.

This step enables higher recognition performance and
is a proposal towards a taxonomy for the formal descrip-
tion of pallet activities. Despite summarizing the classes,
fine-grained annotation will continue to make sense in the
future, as better recognition rates can also be achieved for
minority classes, depending on the data. Training across all
scenarios for recognition as opposed to training adapted to
the respective scenario lowers the recognition rate. How-
ever, this approach is more credible in the context of logis-
tical activities and realistic validity. In the specific case, this
would mean that it is assumed that the circumstances of the
scenario would apply to all occurring warehouses. In logis-
tics, there are many parameters that influence a warehouse
and its processes, and each warehouse is adapted to its own
use case. Therefore, a trained model must be combined with
as much and as diverse data as possible to make a credible
statement. The recordings and scenarios presented here in-
dicate that it is possible to recognize activity classes even
with little data. Nevertheless, more data must be recorded
in the future, including a sufficient number of recordings
containing minority classes. The goal is to improve the bal-

ance of classes in the training data set. For example, the
classes Wrapping, Wrapping (preparation), Lifting (tilting)
and Rotation only occur in Scenario 1, which consists of
four recordings. For further results, these classes must ap-
pear in additional recordings in order to counteract misbal-
ancing.

6 CONCLUSION

The results show that activity detection of pallet movements
using acceleration sensors is feasible. Even lower sampling
rates do not appear to yield worse results. It seems that the
evaluation method of the random forest classifier is not the
decisive factor for the quality of the results, since even the
attempt to use a tuned model did not achieve any improve-
ments. Rather, the data quality and quantity seem to be a
decisive factor. Coming up with a conclusive taxonomy re-
quires an iterative approach. Our results represent the first
step in this direction. This is to be further enhanced in fu-
ture experiments, bearing in mind that classes need to be
semantically clear and relevant to the use case. Yet, the tax-
onomy has to be data-driven, meaning a sufficient classifica-
tion must be achievable. The results show that this approach
is feasible. This may imply changes to the taxonomy, as a
relevant label is not necessarily easy to detect in a recording.
We seek to tackle the issue of data balance is in the training
data for future work. In the recordings presented here, some
classes are only represented in one scenario, which does not
produce meaningful results. Majority classes can already
be recognized. Among other things, supervised learning re-
quires a large number of balanced classes. However, a later
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aggregation of classes can be useful to achieve higher recog-
nition rates. A fine-grained annotation of the videos is there-
fore very useful and should continue to be taken into ac-
count as long as they are labeled consistently. A combina-
tion of fine classes is possible, whereas a later splitting of
the classes is not.

Industry transfer in terms of a commercial product based
on our idea would require more data sets and further tests
on a wide range of hardware. An industrial solution must
be cost-effective, capable of real-time analysis and sustain-
able when it comes to the batteries and sensors. In summary,
issues such as energy supply, data transmission, data eval-
uation and sensor attachment may also need to be clarified
during operations. With more research resources, the real-
ization of such a project is possible and contributes to sus-
tainable logistics.
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Figure 10: Boxplots of the F1 scores for predicting the
activity super classes with a random forest model based on
data provided by different sensors
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