
DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 1
Article is protected by German copyright law

Time and resource utilization of a voxel-based simulation
for indoor multicopters

Zeit- und Ressourcennutzung einer voxelbasierten Simulationsumgebung für
indoor Multikopter

Hendrik Kumpe1
Benjamin Küster1

Malte Stonis1
Ludger Overmeyer2

1IPH – Institut für Integrierte Produktion Hannover gGmbH
2Leibniz University Hanover, Institute of Transport and Automation Technology

onstantly increasing production volumes and new

challenges in production environments with the

same amount of space are forcing manufacturing compa-

nies to deal with the planning of production layouts. The

problem often is a non-existent or outdated production

layout plan. Autonomous multicopters can help by sim-

plifying layout capture. That's why a voxel-based simula-

tion is investigated to develop and train path planning al-

gorithms with and without artificial intelligence. First, the

temporal behavior and the resource utilization of the sim-

ulation is investigated. Then, the time factor of simulation

is compared to real time and what advantages companies

and developers have when using it.

[Keywords: UAS, digital twin, simulation, voxel-based, layout

design]

tändig steigende Produktionszahlen und neue Her-

ausforderungen in der Produktionsumgebung bei

gleichbleibenden Platzverhältnissen zwingen produzie-

rende Unternehmen, sich mit der Planung von Produkti-

onslayouts auseinanderzusetzen. Das Problem dabei ist

oft ein nicht vorhandener oder veralteter Produktionslay-

outplan. Autonome Multikopter können dabei helfen und

die Layoutaufnahme deutlich vereinfachen. Daher wird

eine voxelbasierte Simulation untersucht, um Explorati-

onsalgorithmen mit und ohne Künstliche Intelligenz ent-

wickeln und trainieren zu können. Zunächst wird unter-

sucht, wie sich die Simulation zeitlich verhält.

Anschließend wird auf die Ressourcennutzung eingegan-

gen und dargelegt, wie groß der Simulationszeitfaktor im

Gegensatz zur Echtzeit ist und welchen Vorteil Unterneh-

men und Entwickler bei einer Nutzung haben.

[Schlüsselwörter: UAS, digitaler Zwilling, Simulation, voxelba-

siert, Layoutplanung]

1 INTRODUCTION

The use of autonomous multicopters is becoming in-

creasingly interesting due to the wide range of possible ap-

plications in manufacturing companies. For example, auto-

mated inventory or layout planning according to the

guideline VDI5200 [1-4] can be significantly simplified by

using an autonomous multicopter. Figure 1 shows an ex-

ample of an autonomous multicopter. The one shown was

built for the layout recording use case.

Figure 1. Example for an autonomous multicopter

Because of its enormous impact, the article focuses on

the path planning of autonomous multicopters for indoor

layout recording. This is a critical quality issue for autono-

mous exploration in unknown spaces [5]. An approved way

to create path planning algorithms and train artificial intel-

ligence is to run simulations [6]. There are two major chal-

lenges with current solutions. First, they are computation-

ally intensive because they simulate the entire multicopter,

which takes up a lot of computing resources. Second, the

simulation environments used are unrealistic because there

are straight edges and corners that are easier to use than in

reality.

C

S

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 2
Article is protected by German copyright law

2 SIMULATION

The goal is a simulation software for the development

and training of path planning solutions based on ap-

proaches with and without artificial intelligence. It can be

assumed that all exploration solutions are based on a voxel

abstraction. In this context, voxel-based means that the

world is represented in cubes, in a 3D grid structure, similar

to 2D pixels for images [7]. This type of representation is

shown in Figure 2.It represents a small research production

hall with an open hall gate in a voxel resolution of 10 cm.

Figure 2. voxel-based environment recorded from produc-

tion research hall

Based on the assumption that all path planning solu-

tions are voxel-based, many functions and sensors of a fully

autonomous multicopter can be neglected. This has a big

advantage. The simulation can be used much faster on less

powerful computers. On the one hand, this opens up the

possibility for a larger group of people to work on the topic

of exploration. And on the other hand, significantly faster

throughput times. Artificial intelligence training, for exam-

ple, can be significantly accelerated and even easily paral-

lelized.

Another major advantage is that the simulation world

can be a recorded real world. This approach offers the ben-

efit that artificial intelligence and algorithms learn directly

in a very realistic world, without clear straight walls, cor-

ners, etc. It is also possible for the user to simply record

worlds, which has the advantage of saving time in the pre-

paratory work and at the same time adapting the training or

test world to the later operational environment – production

area. The recording can be made, for example, using the

autonomous multicopter, which will later be equipped with

the path planning algorithm. In addition, there are many

published sample environments that can be used.

Figure 3 shows the functional diagram of the simula-

tion. It shows the standard input and output parameters for

an exploration algorithm of an autonomous multicopter

with a defined field of view (FOV). Also shown are the in-

ternal branches from program start to execution of three

central processing unit (CPU) threads. The function of the

graphics processing unit (GPU) with the video random ac-

cess memory (VRAM) is also shown. The voxel map in the

use case is implemented using the Octomap repository due

to the different general conditions for this article. It is also

possible to choose a different approach for other purposes.

The approach is applicable to all voxel-based methods.

Figure 3. functional diagram of voxel-based simulation

3 STUDIES ON PROGRAM STRUCTURE

In order to examine the simulation, it is necessary to

observe the program structure and perform tests. Three

worlds and paths of different sizes were used for this arti-

cle. A small (S), a medium (M), and a large (L) world were

used to examine the capabilities as well as the advantages

and disadvantages. Worlds S and L correspond to produc-

tion research halls. World L is a worst case scenario with a

completely open space without obstacles. The paths are ex-

act steps through the worlds, which are exactly the same for

each test iteration. The FOV is modeled on a Livox

Mid360. The replacement with any other laser scanner with

a defined FOV is possible with little effort.

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 3
Article is protected by German copyright law

Table 1. test world and path characteristics

World S M L

Voxel size

[cm]
20 10 5

Steps of the

path
771 1,759 1,779

Number of ex-

plored voxels
294,275 3,961,478 40,148,882

Number of

voxels Multi-

copter

64 343 2,197

Number of

voxels FOV
127,729 127,729 227,003

Real dimen-

sions [m]
18×13×8 18×30 ×8 25×25×8

The tests presented in this article were conducted on a

laptop with a 12th-generation Intel i7-12800H x 20 proces-

sor, 32GB of random access memory (RAM), and an

Nvidia GeForce RTX 3080 Ti laptop graphics card. Tests

were also conducted on other laptops for general validity.

The results presented in this article were recorded using

only the above computer architecture for purposes of com-

parability.

3.1 DATATYPE FOR GLOBAL MAP

An important investigation concerns the type of data

storage for the global simulation map. One general condi-

tion is that there is a static world size where voxels are fixed

in a grid and can assume four different states. The states are

the combinations of occupied/free and explored/not ex-

plored. There are several approaches for this top-level stor-

age. One is a structure in which the voxels are stored indi-

vidually with coordinates and properties in a list. This has

the advantage that only as much memory is used as is actu-

ally needed. The disadvantage is that you have to iterate to

find them. Not necessarily through all elements, but at least

through overlayers if they exist, see also Octomap [8]. An-

other approach is to store the data in an array or a list, where

the index is also the coordinate of the grid structure. The

disadvantage of this approach is that non-rectangular

worlds may require much more memory than necessary.

On the other hand, it has the advantage that cells can be

accessed directly and multiple cells can be modified in par-

allel. For the production environment, tests have shown

that the memory requirements of the respective implemen-

tations differ by only about 5-10% depending on the input

world. Further testing also showed that the implementa-

tions based on the Octomap approach are difficult to paral-

lelize. In contrast, parallelizing memory accesses to indi-

vidual cells of an array or a list can be implemented very

well without creating unwanted states.

3.2 RAY SIMULATION

The simulation of rays is another important quality as-

pect of the simulation software, for which there are also

many approaches. The simplest is to calculate the rays

based on the given FOV and query the relevant voxels ac-

cordingly. For example, using the “Fast Voxel Traversal

Algorithm for Ray Tracing” method from Amanatides and

Woo [9]. The disadvantage of this is due to the fact that it

takes a long time to compute the rays over and over again,

and that voxels close to the simulated multicopter are hit

repeatedly with each ray.

For example, the FOV of the Livox MID 360 requires

227,003 rays in the abstraction (5 cm voxel size) for the

simulation, which corresponds to a query frequency of the

closer voxels of up to 50,000 times [10]. This time could

be saved with another method. For example, a kind of tree

structure in which each ray in the form of an outer voxel is

an outer branch. This reduces the number of queries per

voxel to a minimum, but not to one. The disadvantage of

this method is that it cannot be parallelized very well. Tests

have shown that a single ray trace with parallelization on

the CPU or GPU can be significantly faster than a tree

structure with little parallelization.

3.3 PARALLELIZATION

Since the ray tracing algorithm is partially dependent

on parallelization, this must also be examined. The availa-

ble options are no parallelization, CPU and GPU parallel-

ization. The advantage of no or light parallelization is that

less memory-intensive methods can be used. The ad-

vantage of CPU parallelization is that you can work directly

in RAM and there are no unnecessary delays due to data

transfer, as is the case with GPU parallelization.

As shown in Figure 4, the parallelization of the GPU

with a simple ray simulation has a clear time advantage for

each individual case in the tests carried out. The figure

shows the comparison between the three variants in the

three different worlds with a similar program structure

without updating and publishing the Octomap. For the

comparison, 20 threads on the CPU and 200 blocks and 200

threads on the GPU were used. The figure shows the ad-

vantageous use of the GPU with a computing time of less

than 2 ms, while the CPU is well over 14 ms to 300 ms in

both single- and multithreading. Furthermore, an initial

tendency can be observed as to how the L worlds behave in

comparison to the S and M worlds.

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 4
Article is protected by German copyright law

Figure 4. CPU/GPU and single/multithread comparison

3.4 OCTOMAP

In order to continue the investigation and identify po-

tential for improvement, a time analysis of the individual

steps is shown in Figure 5. It can be seen which process

requires how much time in which step. It is visibly prob-

lematic that updating the Octomap as an output in connec-

tion with publishing via an ROS topic sometimes takes

over 20 times as long compared to the other functions. The

reason for this is that the Octomap cannot be updated in

parallel.

Figure 5. time allocation after first implementation

In addition, the complete Octomap is published each

time. This can be improved by, for example, using a differ-

ent voxel-based map transport technique that only pub-

lishes updates. A limitation of this work is the use of Octo-

map, which means that further implementations need to be

investigated in terms of time to speed up the simulation

with Octomap.

ti
m

e
[m

s]

ti
m

e
[m

s]

steps

ti
m

e
[m

s]

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 5
Article is protected by German copyright law

One approach to investigate is the parallel execution

of the Octomap update. As before, raytracing is triggered

on the GPU at each step and the result is copied to RAM.

The idea, instead of updating the Octomap in sin-

glethreaded mode, the values are written to a buffer in mul-

tithreaded mode. A parallel CPU thread takes these values

from the buffer and updates the voxel map. This process

speeds up step processing. But the processing must always

wait until the buffer is empty enough. Tests have shown

that a good buffer size is two million elements. The reason

this is thought to be an advantage is that areas are often re-

peated. When this happens, the buffer fills up on a flight

through or to an unknown area and empties itself without

delay on the return flight. This assumption has been tested

and proven in various experiments in worlds S and M.

Figure 6. time allocation Octomap parallel

But there is also a disadvantage, which can be seen in

Figure 6. In world L, for example, this approach means that

more time is needed in total to complete the specified path.

The reason for this is the high rate of new voxels per step.

It can also be seen that the total time of individual steps

with this parallel method for world L takes significantly

longer than the steps in Figure 5. The figure also shows that

the idea of the concept works and in the end no more time

is spent waiting for the parallel Octomap thread.

The method of updating the Octomap directly without

a parallel buffer is even approx. 1.38 times faster for

world L overall. This is primarily due to the rate at which

the map is published. Each time the map is published, the

Octomap is prevented from being updated. Which means

that with the direct update method the map is only pub-

lished every 152 ms on average, whereas with the parallel

method the map is published every 139 ms. Depending on

the application, this behavior can be a compensate for the

overall time disadvantage.

Ultimately, a decision has to be made as to which of

the two methods is more suitable, depending on the appli-

cation scenario. For the production and layout recording

use case, which is the subject of this article, the buffer and

parallel working variant is preferable, as tests with the S

and M simulation worlds have shown.

Another way to reduce the time required for Octomap

processing is to use the “lazy_evaluation”, “prune” and

“updateInnerOccupancy” options. These various functions

can be found in the Octomap wiki [8]. The table 4 in the

appendix shows the use of the functions. “lazy_eval” and

“updateInnerOccupancy” in combination and separately

“prune” with “lazy_eval” set to default false and without

“updateInnerOccupancy”. The total time required by the

simulation for one run is shown. The tests, as shown in Ta-

ble 4 (appendix), do not show any positive effect on the

total times by using the functions.

The result of the tests on Octomap behavior shows

that, depending on the conditions and the expected world,

the option of direct updating or parallel updating should be

used. In the use case of layout recording in production, a

parallel update and not the use of “lazy_eval”, “updateIn-

nerOccupancy” and “prune” is recommended on the basis

of the tests. For deviating use cases, e. g. for scanning a

cave or similar, separate tests must be carried out in order

to make a qualified statement.

3.5 ANALYSIS OF STEP TIMES AND TOTAL TIMES

Figure 7. analysis of total times

After examining each program workflow and looking

for optimizations, the time results for the three worlds are

shown in figure 7 and 8. 100 test runs were performed for

each world and the total times are plotted in Figure 7. It can

be seen that not all runs take exactly the same amount of

time. Shown are the median (solid line inside the box), the

interquartile range (outline of the box), the 1.5-fold inter-

quartile range (also called whiskers - the horizontal lines

outside the box) and the outliers (points outside).

ti
m

e
[m

s]

step

ti
m

e
[s

]

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 6
Article is protected by German copyright law

Figure 8. analysis of step times

In addition to the total time, the minimum (blue), av-

erage (orange) and maximum step times (green) of the 100

runs of each of the three worlds are shown in Figure 8. Fur-

thermore, the following table shows the average, minimum

and maximum step times of each world.

Table 2. step time average, minimum and maximum

World Average

[ms]

Minimum

[ms]

Maximum

[ms]

S 0.411 0.194 18.912

M 0.724 0.184 52.034

L 12.437 0.802 177.838

The results presented show the maximum speed the

simulation can achieve when given the appropriate motion

input. With a step average of 0.7 ms, in sum with tolerance

2.1 ms and a voxel size of 10 cm, a simulation time factor

of 23.8 can be achieved at a maximum flight speed of 2 m/s

in laser scanning mode. At a realistic flight speed of 1 m/s

and a step average of 0.7 ms, a factor of 142.9 can be

achieved. With this factor, a simulation that would nor-

mally take a full week in real time would optimally take

only 71 minutes. Realistically, this speed is unlikely to be

achieved by any path planning algorithm, but the speed of

the simulation still offers significant advantages over con-

ventional simulation solutions.

3.6 RESOURCE PERFORMANCE

It is also essential to consider the resource consump-

tion when examining the times. Table 3 shows the maxi-

mum memory resource utilization of the simulation of the

three test worlds over 100 tests.

Table 3. analysis of RAM and VRAM usage

World RAM usage

[MiB]

VRAM usage

[MiB]

S 153 208

M 324 230

L 845 364

The table shows that only a small amount of memory

is required per simulation. For world L, this is 2.1 % with

a 364 MB memory usage of the VRAM. On the RAM it is

also approx. 2.1 % with a utilization of 845 MiB.

ti
m

e
[m

s]

steps

steps

steps

ti
m

e
[m

s]

ti
m

e
[m

s]

L World

M World

S World

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 7
Article is protected by German copyright law

Figure 9 and 10 show additional resource parameters.

The GPU utilization of the simulation in % (1), the GPU

utilization of the total system in % (2), the power applied

to the GPU in W (3), and the CPU utilization of the simu-

lation in % (4) is shown. The values shown are compiled

from 100 tests in world L. The simulation ran from the 8th

second of the recording and ended 10 seconds before the

end of the recording, so that the idle state can be observed

in comparison to operation. For the CPU, 100 % is full uti-

lization of one of the 20 threads. For the GPU, 100 %

means that all streaming multiprocessors are fully utilized.

Figure 9. analysis of gpu utilization

Figure 9 and 10 shows that the GPU resource utiliza-

tion of the simulation does not exceed 50 %, but the total

GPU utilization briefly exceeds 80 % at maximum. This

means that when running multiple simulations in parallel,

care must be taken to ensure that all GPU performance

peaks do not coincide. Otherwise, the simulation will slow

down due to unavailable GPU resources. Tests have shown

that running 4 simulations of world L in parallel with a sim-

ultaneous start does not cause any noticeable loss of overall

performance. The figure also shows a healthy utilization of

up to 150 % of CPU threads and a positive trend in GPU

power consumption.

Figure 10. analysis of gpu power and cpu utilization

4 BEHAVIOR OF SIMULATION

4.1 RECORDING OF A VOXEL WORLD

There are several ways to record voxel worlds. The

easiest way is to take a multicopter with laser scanner and

fly it manual through the own production environment. An-

other approach would be for the user to use the pool of pub-

lished indoor laser scans and use them as a simulation

world. It is also possible to set up a simulation with e. g.

AirSim and scan it to get a voxel world. But note, that this

destroys the advantage of using real worlds.

The recordings in your own production areas are car-

ried out quickly. The recordings for worlds S and M took

3:20 minutes and 5:30 minutes. An example recording in a

3,500 m² production hall with a very precise and slow laser

scan flight took 27:40 minutes. It should be noted that the

time per m² is not linear, identical and easily transferable.

It is dependent on the environmental conditions and the

production layout.

Octomap, FAST_LIO and a Mid360 were used for the

recordings. But it is not enough to consider the pure record-

ing time. It is also important to consider the rework time.

This is <30 minutes for the recorded worlds, assuming they

are complete.

time [s/3]

cp
u

 u
ti

li
za

ti
o
n

 s
im

u
at

io
n

 [
%

]
g

p
u

 p
o

w
er

 [
W

]

time [s/3]

time [s/3]

4

3

g
p
u

 u
ti

li
za

ti
o
n

 o
v

er
al

l
[%

]
g

p
u

 u
ti

li
za

ti
o
n

 s
im

u
la

ti
o
n

 [
%

]

time [s/3]

time [s/3]

1

2

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 8
Article is protected by German copyright law

4.2 SIZE OF VOXEL

A crucial point of investigation is the voxel size in

which the worlds are to be mapped. This is because the

number of voxels increases quadratically with half the

voxel size. One voxel becomes eight at half size and 64 at

quarter size. Changing the voxel size also has the effect that

the flight speed of the multicopter can be adjusted in the

simulation. The reason for this is the constant time for the

step calculation and one step is always one voxel size. In-

creasing the voxel size can also increase the maximum

speed of the multicopter. In lieu of directly increasing the

multicopter's speed, it is also possible to adjust the simula-

tion time factor.

Therefore, it is necessary to choose the largest possible

voxel size in order to save maximum resources and com-

puting time. This is because every increase in voxel size

provides benefits to the simulation and path planning algo-

rithms, as well as to the live flight and onboard-processing.

4.3 SIZE OF VOXEL VS MULTICOPTER

Accordingly, the research question is how large can

the voxel be compared to the multicopter size plus the min-

imum safety distance for the production layout recording

scenario? To answer this question, it is important to calcu-

late the safety distance correctly. Note that the safety dis-

tance can be different for vertical and horizontal. This is

important because turbulence caused by the rotors or suck

in effects can cause a crash if the multicopter flies too close

to obstacles [11-14]. Defining the scenario is important.

Because it is necessary to define the minimum size of the

openings through which the multicopter will fly. Depend-

ing on the answer to this question, the voxel size can be

increased or decreased.

To answer the question, it must be determined how

wide or high the minimum fly-through width or height may

be (𝑑𝑚𝑖𝑛) and how wide the maximum diameter of the used

multicopter is (𝑑𝑐𝑜𝑝𝑡𝑒𝑟_𝑚𝑎𝑥).

The following values are assumed for the scenario

considered in the article:

𝑑𝑚𝑖𝑛 = 0.8 𝑚

𝑑𝑐𝑜𝑝𝑡𝑒𝑟_𝑚𝑎𝑥 = 0.4 𝑚 - Width of the multicopter plus a

safety distance of 50 mm

A method for calculating the maximum voxel width

has been developed and proposed as follows.

𝑙𝑣𝑜𝑥𝑒𝑙 =
𝑑𝑚𝑖𝑛 − 𝑑copter _𝑚𝑎𝑥

2
=

0.8 𝑚 − 0.4 𝑚

2
= 20 𝑐𝑚

In the calculation for the scenario shown, the maxi-

mum width or height that can be flown through is twice the

height of the multicopter. This is only for this scenario and

does not necessarily have to be twice the height.

Figure 11. voxel size analysis with 20 cm (1) and 15 cm (2)

Figure 11 shows two scenarios to confirm the calcula-

tion. The orange lines represent walls that are 80 cm apart.

The gray voxels are occupied voxels and the white voxels

are free voxels. The multicopter has a diameter of 35 cm

(1) and 45 cm (2) with a safety margin of 50 mm each. It

can be seen that the voxel size of 20 cm (1) and 15 cm (2)

leaves exactly the right corridor of voxels. This confirms

the formulated calculation for the maximum voxel width.

5 CONCLUSION AND OUTLOOK

A voxel-based simulation environment for training

and development of exploration solutions with and without

artificial intelligence offers enormous possibilities. This

has been demonstrated in this article through experiments

and studies on speed and resource consumption. For multi-

copters with a diameter of 0.4 m, a voxel size of 20 cm is

required, under the condition of a minimum flight width or

height of 0.8 m. A research hall can be completely explored

within a few seconds or even less than a second, provided

that the exploration algorithm can maintain this speed. The

voxel-based approach allows more users to produce results

faster and can pave the way for a major advantage in layout

capture and factory planning.

The next step is to investigate the advantages of using

voxel-based real worlds in simulation and the degree of

parallelization that can be achieved even when fully con-

trolled by path planning algorithms. In addition, the use of

Octomap can be questioned and, if necessary, a better or

alternative solution can be found or developed.

6 FUNDING

This project, AIMS5.0, is funded by the Chips Joint

Undertaking and its members, including additional funding

from the German Federal Ministry of Education and Re-

search (BMBF) under grant agreement no. 101112089.

LITERATURE

[1] VDI 5200 Part 1 - Factory planning - Planning

procedures; 2011.

1 2

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 9
Article is protected by German copyright law

[2] VDI 5200 Part 2 - Factory planning - Morpholog-

ical model of the factory for the target definition

in the factory planning; 2016.

[3] VDI 5200 Part 3 - Factory planning - Model for

the design of global production networks; 2016.

[4] VDI 5200 Part 4- Factory planning - Enhanced

economic evaluation within factory planning;

2016.

[5] L. M. González de Santos, E. Frías Nores, J. Mar-

tínez Sánchez, and H. González Jorge, ‘Indoor

path-planning algorithm for UAV-based contact

inspection’, Sensors (Basel), vol. 21, no. 2, p.

642, Jan. 2021.

[6] A. Seel, F. Kreutzjans, B. Küster, M. Stonis, and

L. Overmeyer, ‘Dueling Double Deep Q-Net-

work for indoor exploration in factory environ-

ments with an unmanned aircraft system’, in 2023

22nd International Symposium INFOTEH-

JAHORINA (INFOTEH), East Sarajevo, Bosnia

and Herzegovina, 2023.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C.

Stachniss, and W. Burgard, ‘OctoMap: an effi-

cient probabilistic 3D mapping framework based

on octrees’, Auton. Robots, vol. 34, no. 3, pp.

189–206, Apr. 2013.

[8] K. M. Wurm and A. Hornung, ‘OctoMap’.

[Online]. Available: https://octomap.github.io/.

[Accessed: 30-Jul-2024].

[9] Amanatides, John & Woo, Andrew. (1987). A

Fast Voxel Traversal Algorithm for Ray Tracing.

Proceedings of EuroGraphics. 87.

[10] ‘Livox Mid-360’. [Online]. Available:

https://www.livoxtech.com/de/mid-360. [Ac-

cessed: 30-Jul-2024].

[11] N. S. Jamaluddin, A. Celik, K. Baskaran, D.

Rezgui, and M. Azarpeyvand, ‘Experimental

analysis of a propeller noise in turbulent flow’,

Phys. Fluids (1994), vol. 35, no. 7, Jul. 2023.

[12] H. Choayb, ‘Proposition of a propeller shape: A

numerical study of its performance’, Arab. J. Sci.

Eng., vol. 49, no. 2, pp. 2119–2142, Feb. 2024.

[13] R. Dahlstrom, ‘Flying safe: How to operate

drones near buildings and other structures’, De-

fault, 12-Nov-2021. [Online]. Available:

https://connect.comptia.org/blog/flying-safe-

how-to-operate-drones-near-buildings-and-

other-structures. [Accessed: 30-Jul-2024].

[14] Z. Zhang, C. Xie, W. Wang, and C. An, ‘An ex-

perimental and numerical evaluation of the aero-

dynamic performance of a UAV propeller consid-

ering pitch motion’, Drones, vol. 7, no. 7, p. 447,

Jul. 2023.

Hendrik Kumpe, M. Sc (*1997) studied electrical engi-

neering and information technology at Bielefeld Univer-

sity of Applied Sciences and Arts and at the Leibniz Uni-

versity Hannover. Since June 2022, he has been working

at IPH – Institut für Integrierte Produktion Hannover

gGmbH as a project engineer in the field of production au-

tomation.

Address: IPH – Institut für Integrierte Produktion Hanno-

ver gGmbH, Hollerithallee 6, 30419 Hannover, Germany,

Phone: +49 511 27976-224, Fax: +49 511 27976-888, E-Mail:

kumpe@iph-hannover.de

Dr.-Ing. Benjamin Küster (*1988) studied industrial en-

gineering at the Leibniz University Hannover. From No-

vember 2014 to August 2017, he worked as a project en-

gineer at the IPH – Institut für Integrierte Produktion

Hannover gGmbH in the department of production auto-

mation. In 2020, he received his doctorate with a thesis on

“Automated quality assessment of 8D reports by methods

of computational linguistics”. Since September 2017 Ben-

jamin Küster is leader of the department of production au-

tomation.

Dr.-Ing. Malte Stonis (*1979) studied mechanical engi-

neering at the Leibniz University Hannover with a focus

on vehicle systems and biomedical engineering. He has

been working at IPH – Institut für Integrierte Produktion

Hannover gGmbH since 2006, initially as a project engi-

neer in the field of process technology and from 2008 as

head of department. In 2011, he received his doctorate

with a thesis on "Multidirectional forging of flat alumin-

ium parts". Since September 2016 Malte Stonis is coordi-

nating managing director of the IPH.

Prof. Dr.-Ing. Ludger Overmeyer (*1964) studied elec-

trical engineering at the University of Hanover between

1984 and 1991. In 1996 he finished his doctorate in me-

chanical engineering at the University of Hanover. From

1997 to 2001 he worked as project manager, division man-

ager and head of research and development at Mühlbauer

AG in Roding. Since 2001 Ludger Overmeyer is Professor

of Transport and Automation Technology Institute of

Leibniz University Hannover.

Address: Institute of Transport and Automation Technol-

ogy, Leibniz University Hannover, An der Universität 2,

30823 Garbsen, Germany Phone: +49 511 762 2503, Fax:

+49 511 762-4007, E-Mail: ludger.overmeyer@ita.uni-

hannover.de

DOI: 10.2195/lj_proc_krumpe_en_202410_01

© 2024 Logistics Journal: Proceedings – ISSN 2192-9084 Page 10
Article is protected by German copyright law

7 APPENDIX

Table 4. Evaluation of benefit when using Octomap function

Test World
total time

[s]

lazy_eval=false

no updateInnerOccupancy

S 1.5

M 32.7

L 84.1

lazy_eval=true

no updateInnerOccupancy

S 2.5

M 102.1

L 843.3

lazy_eval=false

updateInnerOccupancy

S 2.3

M 62.4

L 157.7

lazy_eval=true

updateInnerOccupancy

S 3.8

M 189.0

L 1,617.2

never execute prune

S 1.6

M 34.0

L 90.4

execute prune each update

S 2.0

M 50.1

L 124.4

execute prune after each

1000th update

S 1.6

M 33.8

L 90.4

execute prune after each

100 ms

S 1.6

M 33.8

L 89.9

execute prune after each

1000 ms

S 1.6

M 33.5

L 90.2

DOI: 10.2195/lj_proc_krumpe_en_202410_01

