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onstantly increasing production volumes and new

challenges in production environments with the

same amount of space are forcing manufacturing compa-

nies to deal with the planning of production layouts. The 

problem often is a non-existent or outdated production 

layout plan. Autonomous multicopters can help by sim-

plifying layout capture. That's why a voxel-based simula-

tion is investigated to develop and train path planning al-

gorithms with and without artificial intelligence. First, the 

temporal behavior and the resource utilization of the sim-

ulation is investigated. Then, the time factor of simulation 

is compared to real time and what advantages companies 

and developers have when using it. 

[Keywords: UAS, digital twin, simulation, voxel-based, layout 

design] 

tändig steigende Produktionszahlen und neue Her-

ausforderungen in der Produktionsumgebung bei

gleichbleibenden Platzverhältnissen zwingen produzie-

rende Unternehmen, sich mit der Planung von Produkti-

onslayouts auseinanderzusetzen. Das Problem dabei ist 

oft ein nicht vorhandener oder veralteter Produktionslay-

outplan. Autonome Multikopter können dabei helfen und 

die Layoutaufnahme deutlich vereinfachen. Daher wird 

eine voxelbasierte Simulation untersucht, um Explorati-

onsalgorithmen mit und ohne Künstliche Intelligenz ent-

wickeln und trainieren zu können. Zunächst wird unter-

sucht, wie sich die Simulation zeitlich verhält. 

Anschließend wird auf die Ressourcennutzung eingegan-

gen und dargelegt, wie groß der Simulationszeitfaktor im 

Gegensatz zur Echtzeit ist und welchen Vorteil Unterneh-

men und Entwickler bei einer Nutzung haben. 

[Schlüsselwörter: UAS, digitaler Zwilling, Simulation, voxelba-

siert, Layoutplanung] 

1 INTRODUCTION  

The use of autonomous multicopters is becoming in-

creasingly interesting due to the wide range of possible ap-

plications in manufacturing companies. For example, auto-

mated inventory or layout planning according to the 

guideline VDI5200 [1-4] can be significantly simplified by 

using an autonomous multicopter. Figure 1 shows an ex-

ample of an autonomous multicopter. The one shown was 

built for the layout recording use case. 

Figure 1. Example for an autonomous multicopter 

Because of its enormous impact, the article focuses on 

the path planning of autonomous multicopters for indoor 

layout recording. This is a critical quality issue for autono-

mous exploration in unknown spaces [5]. An approved way 

to create path planning algorithms and train artificial intel-

ligence is to run simulations [6]. There are two major chal-

lenges with current solutions. First, they are computation-

ally intensive because they simulate the entire multicopter, 

which takes up a lot of computing resources. Second, the 

simulation environments used are unrealistic because there 

are straight edges and corners that are easier to use than in 

reality. 
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2 SIMULATION 

The goal is a simulation software for the development 

and training of path planning solutions based on ap-

proaches with and without artificial intelligence. It can be 

assumed that all exploration solutions are based on a voxel 

abstraction. In this context, voxel-based means that the 

world is represented in cubes, in a 3D grid structure, similar 

to 2D pixels for images [7]. This type of representation is 

shown in Figure 2.It represents a small research production 

hall with an open hall gate in a voxel resolution of 10 cm. 

Figure 2. voxel-based environment recorded from produc-

tion research hall 

Based on the assumption that all path planning solu-

tions are voxel-based, many functions and sensors of a fully 

autonomous multicopter can be neglected. This has a big 

advantage. The simulation can be used much faster on less 

powerful computers. On the one hand, this opens up the 

possibility for a larger group of people to work on the topic 

of exploration. And on the other hand, significantly faster 

throughput times. Artificial intelligence training, for exam-

ple, can be significantly accelerated and even easily paral-

lelized. 

Another major advantage is that the simulation world 

can be a recorded real world. This approach offers the ben-

efit that artificial intelligence and algorithms learn directly 

in a very realistic world, without clear straight walls, cor-

ners, etc. It is also possible for the user to simply record 

worlds, which has the advantage of saving time in the pre-

paratory work and at the same time adapting the training or 

test world to the later operational environment – production 

area. The recording can be made, for example, using the 

autonomous multicopter, which will later be equipped with 

the path planning algorithm. In addition, there are many 

published sample environments that can be used. 

Figure 3 shows the functional diagram of the simula-

tion. It shows the standard input and output parameters for 

an exploration algorithm of an autonomous multicopter 

with a defined field of view (FOV). Also shown are the in-

ternal branches from program start to execution of three 

central processing unit (CPU) threads. The function of the 

graphics processing unit (GPU) with the video random ac-

cess memory (VRAM) is also shown. The voxel map in the 

use case is implemented using the Octomap repository due 

to the different general conditions for this article. It is also 

possible to choose a different approach for other purposes. 

The approach is applicable to all voxel-based methods. 

Figure 3. functional diagram of voxel-based simulation 

3 STUDIES ON PROGRAM STRUCTURE 

In order to examine the simulation, it is necessary to 

observe the program structure and perform tests. Three 

worlds and paths of different sizes were used for this arti-

cle. A small (S), a medium (M), and a large (L) world were 

used to examine the capabilities as well as the advantages 

and disadvantages. Worlds S and L correspond to produc-

tion research halls. World L is a worst case scenario with a 

completely open space without obstacles. The paths are ex-

act steps through the worlds, which are exactly the same for 

each test iteration. The FOV is modeled on a Livox 

Mid360. The replacement with any other laser scanner with 

a defined FOV is possible with little effort. 
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Table 1. test world and path characteristics 

World S M L 

Voxel size 

[cm] 
20 10 5 

Steps of the 

path 
771 1,759 1,779 

Number of ex-

plored voxels 
294,275 3,961,478 40,148,882 

Number of 

voxels Multi-

copter 

64 343 2,197 

Number of 

voxels FOV 
127,729 127,729 227,003 

Real dimen-

sions [m] 
18×13×8 18×30 ×8 25×25×8 

The tests presented in this article were conducted on a 

laptop with a 12th-generation Intel i7-12800H x 20 proces-

sor, 32GB of random access memory (RAM), and an 

Nvidia GeForce RTX 3080 Ti laptop graphics card. Tests 

were also conducted on other laptops for general validity. 

The results presented in this article were recorded using 

only the above computer architecture for purposes of com-

parability. 

3.1 DATATYPE FOR GLOBAL MAP 

An important investigation concerns the type of data 

storage for the global simulation map. One general condi-

tion is that there is a static world size where voxels are fixed 

in a grid and can assume four different states. The states are 

the combinations of occupied/free and explored/not ex-

plored. There are several approaches for this top-level stor-

age. One is a structure in which the voxels are stored indi-

vidually with coordinates and properties in a list. This has 

the advantage that only as much memory is used as is actu-

ally needed. The disadvantage is that you have to iterate to 

find them. Not necessarily through all elements, but at least 

through overlayers if they exist, see also Octomap [8]. An-

other approach is to store the data in an array or a list, where 

the index is also the coordinate of the grid structure. The 

disadvantage of this approach is that non-rectangular 

worlds may require much more memory than necessary. 

On the other hand, it has the advantage that cells can be 

accessed directly and multiple cells can be modified in par-

allel. For the production environment, tests have shown 

that the memory requirements of the respective implemen-

tations differ by only about 5-10% depending on the input 

world. Further testing also showed that the implementa-

tions based on the Octomap approach are difficult to paral-

lelize. In contrast, parallelizing memory accesses to indi-

vidual cells of an array or a list can be implemented very 

well without creating unwanted states. 

3.2 RAY SIMULATION 

The simulation of rays is another important quality as-

pect of the simulation software, for which there are also 

many approaches. The simplest is to calculate the rays 

based on the given FOV and query the relevant voxels ac-

cordingly. For example, using the “Fast Voxel Traversal 

Algorithm for Ray Tracing” method from Amanatides and 

Woo [9]. The disadvantage of this is due to the fact that it 

takes a long time to compute the rays over and over again, 

and that voxels close to the simulated multicopter are hit 

repeatedly with each ray.  

For example, the FOV of the Livox MID 360 requires 

227,003 rays in the abstraction (5 cm voxel size) for the 

simulation, which corresponds to a query frequency of the 

closer voxels of up to 50,000 times [10]. This time could 

be saved with another method. For example, a kind of tree 

structure in which each ray in the form of an outer voxel is 

an outer branch. This reduces the number of queries per 

voxel to a minimum, but not to one. The disadvantage of 

this method is that it cannot be parallelized very well. Tests 

have shown that a single ray trace with parallelization on 

the CPU or GPU can be significantly faster than a tree 

structure with little parallelization. 

3.3 PARALLELIZATION 

Since the ray tracing algorithm is partially dependent 

on parallelization, this must also be examined. The availa-

ble options are no parallelization, CPU and GPU parallel-

ization. The advantage of no or light parallelization is that 

less memory-intensive methods can be used. The ad-

vantage of CPU parallelization is that you can work directly 

in RAM and there are no unnecessary delays due to data 

transfer, as is the case with GPU parallelization. 

As shown in Figure 4, the parallelization of the GPU 

with a simple ray simulation has a clear time advantage for 

each individual case in the tests carried out. The figure 

shows the comparison between the three variants in the 

three different worlds with a similar program structure 

without updating and publishing the Octomap. For the 

comparison, 20 threads on the CPU and 200 blocks and 200 

threads on the GPU were used. The figure shows the ad-

vantageous use of the GPU with a computing time of less 

than 2 ms, while the CPU is well over 14 ms to 300 ms in 

both single- and multithreading. Furthermore, an initial 

tendency can be observed as to how the L worlds behave in 

comparison to the S and M worlds. 
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Figure 4. CPU/GPU and single/multithread comparison 

3.4 OCTOMAP 

In order to continue the investigation and identify po-

tential for improvement, a time analysis of the individual 

steps is shown in Figure 5. It can be seen which process 

requires how much time in which step. It is visibly prob-

lematic that updating the Octomap as an output in connec-

tion with publishing via an ROS topic sometimes takes 

over 20 times as long compared to the other functions. The 

reason for this is that the Octomap cannot be updated in 

parallel. 

Figure 5. time allocation after first implementation 

In addition, the complete Octomap is published each 

time. This can be improved by, for example, using a differ-

ent voxel-based map transport technique that only pub-

lishes updates. A limitation of this work is the use of Octo-

map, which means that further implementations need to be 

investigated in terms of time to speed up the simulation 

with Octomap. 
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One approach to investigate is the parallel execution 

of the Octomap update. As before, raytracing is triggered 

on the GPU at each step and the result is copied to RAM. 

The idea, instead of updating the Octomap in sin-

glethreaded mode, the values are written to a buffer in mul-

tithreaded mode. A parallel CPU thread takes these values 

from the buffer and updates the voxel map. This process 

speeds up step processing. But the processing must always 

wait until the buffer is empty enough. Tests have shown 

that a good buffer size is two million elements. The reason 

this is thought to be an advantage is that areas are often re-

peated. When this happens, the buffer fills up on a flight 

through or to an unknown area and empties itself without 

delay on the return flight. This assumption has been tested 

and proven in various experiments in worlds S and M. 

Figure 6. time allocation Octomap parallel 

But there is also a disadvantage, which can be seen in 

Figure 6. In world L, for example, this approach means that 

more time is needed in total to complete the specified path. 

The reason for this is the high rate of new voxels per step. 

It can also be seen that the total time of individual steps 

with this parallel method for world L takes significantly 

longer than the steps in Figure 5. The figure also shows that 

the idea of the concept works and in the end no more time 

is spent waiting for the parallel Octomap thread. 

The method of updating the Octomap directly without 

a parallel buffer is even approx. 1.38 times faster for 

world L overall. This is primarily due to the rate at which 

the map is published. Each time the map is published, the 

Octomap is prevented from being updated. Which means 

that with the direct update method the map is only pub-

lished every 152 ms on average, whereas with the parallel 

method the map is published every 139 ms. Depending on 

the application, this behavior can be a compensate for the 

overall time disadvantage. 

Ultimately, a decision has to be made as to which of 

the two methods is more suitable, depending on the appli-

cation scenario. For the production and layout recording 

use case, which is the subject of this article, the buffer and 

parallel working variant is preferable, as tests with the S 

and M simulation worlds have shown. 

Another way to reduce the time required for Octomap 

processing is to use the “lazy_evaluation”, “prune” and 

“updateInnerOccupancy” options. These various functions 

can be found in the Octomap wiki [8]. The table 4 in the 

appendix shows the use of the functions. “lazy_eval” and 

“updateInnerOccupancy” in combination and separately 

“prune” with “lazy_eval” set to default false and without 

“updateInnerOccupancy”. The total time required by the 

simulation for one run is shown. The tests, as shown in Ta-

ble 4 (appendix), do not show any positive effect on the 

total times by using the functions. 

The result of the tests on Octomap behavior shows 

that, depending on the conditions and the expected world, 

the option of direct updating or parallel updating should be 

used. In the use case of layout recording in production, a 

parallel update and not the use of “lazy_eval”, “updateIn-

nerOccupancy” and “prune” is recommended on the basis 

of the tests. For deviating use cases, e. g. for scanning a 

cave or similar, separate tests must be carried out in order 

to make a qualified statement. 

3.5 ANALYSIS OF STEP TIMES AND TOTAL TIMES 

Figure 7. analysis of total times 

After examining each program workflow and looking 

for optimizations, the time results for the three worlds are 

shown in figure 7 and 8. 100 test runs were performed for 

each world and the total times are plotted in Figure 7. It can 

be seen that not all runs take exactly the same amount of 

time. Shown are the median (solid line inside the box), the 

interquartile range (outline of the box), the 1.5-fold inter-

quartile range (also called whiskers - the horizontal lines 

outside the box) and the outliers (points outside).  
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Figure 8. analysis of step times 

In addition to the total time, the minimum (blue), av-

erage (orange) and maximum step times (green) of the 100 

runs of each of the three worlds are shown in Figure 8. Fur-

thermore, the following table shows the average, minimum 

and maximum step times of each world. 

Table 2. step time average, minimum and maximum 

World Average 

[ms] 

Minimum 

[ms] 

Maximum 

[ms] 

S 0.411 0.194 18.912 

M 0.724 0.184 52.034 

L 12.437 0.802 177.838 

The results presented show the maximum speed the 

simulation can achieve when given the appropriate motion 

input. With a step average of 0.7 ms, in sum with tolerance 

2.1 ms and a voxel size of 10 cm, a simulation time factor 

of 23.8 can be achieved at a maximum flight speed of 2 m/s 

in laser scanning mode. At a realistic flight speed of 1 m/s 

and a step average of 0.7 ms, a factor of 142.9 can be 

achieved. With this factor, a simulation that would nor-

mally take a full week in real time would optimally take 

only 71 minutes. Realistically, this speed is unlikely to be 

achieved by any path planning algorithm, but the speed of 

the simulation still offers significant advantages over con-

ventional simulation solutions. 

3.6 RESOURCE PERFORMANCE 

It is also essential to consider the resource consump-

tion when examining the times. Table 3 shows the maxi-

mum memory resource utilization of the simulation of the 

three test worlds over 100 tests. 

Table 3. analysis of RAM and VRAM usage 

World RAM usage 

[MiB] 

VRAM usage 

[MiB] 

S 153 208 

M 324 230 

L 845 364 

The table shows that only a small amount of memory 

is required per simulation. For world L, this is 2.1 % with 

a 364 MB memory usage of the VRAM. On the RAM it is 

also approx. 2.1 % with a utilization of 845 MiB. 
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Figure 9 and 10 show additional resource parameters. 

The GPU utilization of the simulation in % (1), the GPU 

utilization of the total system in % (2), the power applied 

to the GPU in W (3), and the CPU utilization of the simu-

lation in % (4) is shown. The values shown are compiled 

from 100 tests in world L. The simulation ran from the 8th 

second of the recording and ended 10 seconds before the 

end of the recording, so that the idle state can be observed 

in comparison to operation. For the CPU, 100 % is full uti-

lization of one of the 20 threads. For the GPU, 100 % 

means that all streaming multiprocessors are fully utilized. 

Figure 9. analysis of gpu utilization 

Figure 9 and 10 shows that the GPU resource utiliza-

tion of the simulation does not exceed 50 %, but the total 

GPU utilization briefly exceeds 80 % at maximum. This 

means that when running multiple simulations in parallel, 

care must be taken to ensure that all GPU performance 

peaks do not coincide. Otherwise, the simulation will slow 

down due to unavailable GPU resources. Tests have shown 

that running 4 simulations of world L in parallel with a sim-

ultaneous start does not cause any noticeable loss of overall 

performance. The figure also shows a healthy utilization of 

up to 150 % of CPU threads and a positive trend in GPU 

power consumption. 

Figure 10. analysis of gpu power and cpu utilization 

4  BEHAVIOR OF SIMULATION  

4.1 RECORDING OF A VOXEL WORLD 

There are several ways to record voxel worlds. The 

easiest way is to take a multicopter with laser scanner and 

fly it manual through the own production environment. An-

other approach would be for the user to use the pool of pub-

lished indoor laser scans and use them as a simulation 

world. It is also possible to set up a simulation with e. g. 

AirSim and scan it to get a voxel world. But note, that this 

destroys the advantage of using real worlds. 

The recordings in your own production areas are car-

ried out quickly. The recordings for worlds S and M took 

3:20 minutes and 5:30 minutes. An example recording in a 

3,500 m² production hall with a very precise and slow laser 

scan flight took 27:40 minutes. It should be noted that the 

time per m² is not linear, identical and easily transferable. 

It is dependent on the environmental conditions and the 

production layout. 

Octomap, FAST_LIO and a Mid360 were used for the 

recordings. But it is not enough to consider the pure record-

ing time. It is also important to consider the rework time. 

This is <30 minutes for the recorded worlds, assuming they 

are complete. 
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4.2 SIZE OF VOXEL 

A crucial point of investigation is the voxel size in 

which the worlds are to be mapped. This is because the 

number of voxels increases quadratically with half the 

voxel size. One voxel becomes eight at half size and 64 at 

quarter size. Changing the voxel size also has the effect that 

the flight speed of the multicopter can be adjusted in the 

simulation. The reason for this is the constant time for the 

step calculation and one step is always one voxel size. In-

creasing the voxel size can also increase the maximum 

speed of the multicopter. In lieu of directly increasing the 

multicopter's speed, it is also possible to adjust the simula-

tion time factor. 

Therefore, it is necessary to choose the largest possible 

voxel size in order to save maximum resources and com-

puting time. This is because every increase in voxel size 

provides benefits to the simulation and path planning algo-

rithms, as well as to the live flight and onboard-processing. 

4.3 SIZE OF VOXEL VS MULTICOPTER 

Accordingly, the research question is how large can 

the voxel be compared to the multicopter size plus the min-

imum safety distance for the production layout recording 

scenario? To answer this question, it is important to calcu-

late the safety distance correctly. Note that the safety dis-

tance can be different for vertical and horizontal. This is 

important because turbulence caused by the rotors or suck 

in effects can cause a crash if the multicopter flies too close 

to obstacles [11-14]. Defining the scenario is important. 

Because it is necessary to define the minimum size of the 

openings through which the multicopter will fly. Depend-

ing on the answer to this question, the voxel size can be 

increased or decreased. 

To answer the question, it must be determined how 

wide or high the minimum fly-through width or height may 

be (𝑑𝑚𝑖𝑛) and how wide the maximum diameter of the used

multicopter is (𝑑𝑐𝑜𝑝𝑡𝑒𝑟_𝑚𝑎𝑥).

The following values are assumed for the scenario 

considered in the article: 

𝑑𝑚𝑖𝑛 = 0.8 𝑚

𝑑𝑐𝑜𝑝𝑡𝑒𝑟_𝑚𝑎𝑥 = 0.4 𝑚 - Width of the multicopter plus a

safety distance of 50 mm 

A method for calculating the maximum voxel width 

has been developed and proposed as follows. 

𝑙𝑣𝑜𝑥𝑒𝑙 =
𝑑𝑚𝑖𝑛 − 𝑑copter _𝑚𝑎𝑥

2
=

0.8 𝑚 −  0.4 𝑚

2
= 20 𝑐𝑚 

In the calculation for the scenario shown, the maxi-

mum width or height that can be flown through is twice the 

height of the multicopter. This is only for this scenario and 

does not necessarily have to be twice the height. 

Figure 11. voxel size analysis with 20 cm (1) and 15 cm (2) 

Figure 11 shows two scenarios to confirm the calcula-

tion. The orange lines represent walls that are 80 cm apart. 

The gray voxels are occupied voxels and the white voxels 

are free voxels. The multicopter has a diameter of 35 cm 

(1) and 45 cm (2) with a safety margin of 50 mm each. It

can be seen that the voxel size of 20 cm (1) and 15 cm (2)

leaves exactly the right corridor of voxels. This confirms

the formulated calculation for the maximum voxel width.

5 CONCLUSION AND OUTLOOK 

A voxel-based simulation environment for training 

and development of exploration solutions with and without 

artificial intelligence offers enormous possibilities. This 

has been demonstrated in this article through experiments 

and studies on speed and resource consumption. For multi-

copters with a diameter of 0.4 m, a voxel size of 20 cm is 

required, under the condition of a minimum flight width or 

height of 0.8 m. A research hall can be completely explored 

within a few seconds or even less than a second, provided 

that the exploration algorithm can maintain this speed. The 

voxel-based approach allows more users to produce results 

faster and can pave the way for a major advantage in layout 

capture and factory planning. 

The next step is to investigate the advantages of using 

voxel-based real worlds in simulation and the degree of 

parallelization that can be achieved even when fully con-

trolled by path planning algorithms. In addition, the use of 

Octomap can be questioned and, if necessary, a better or 

alternative solution can be found or developed. 
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7 APPENDIX 

Table 4. Evaluation of benefit when using Octomap function 

Test World 
total time 

[s] 

lazy_eval=false 

no updateInnerOccupancy 

S 1.5 

M 32.7 

L 84.1 

lazy_eval=true 

no updateInnerOccupancy 

S 2.5 

M 102.1 

L 843.3 

lazy_eval=false 

updateInnerOccupancy 

S 2.3 

M 62.4 

L 157.7 

lazy_eval=true 

updateInnerOccupancy 

S 3.8 

M 189.0 

L 1,617.2 

never execute prune 

S 1.6 

M 34.0 

L 90.4 

execute prune each update 

S 2.0 

M 50.1 

L 124.4 

execute prune after each 

1000th update 

S 1.6 

M 33.8 

L 90.4 

execute prune after each 

100 ms 

S 1.6 

M 33.8 

L 89.9 

execute prune after each 

1000 ms  

S 1.6 

M 33.5 

L 90.2 
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