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he increasing volume of shipments in the courier, ex-
press, and parcel (CEP) sector and the transition 

from traditional rectangular cardboards to small con-
signments with flexible packaging pose challenges for 
manufacturers and operators of sorting technology. Ex-
isting sorting systems often fail to meet the requirements 
of these changes. While physics simulations are com-
monly used to develop new sorting systems, they are in-
adequate for modeling flexible consignments. A novel 
simulation approach for small consignments with flexible 
packaging was developed recently. Our study builds on 
that approach by parametrizing and validating the simu-
lation. Initially, we analyzed the movement and transit 
times of four different types of small consignments on 
three test rigs with various conveying technologies, such 
as belt and roller conveyors, operated at different speeds. 
We then created a simulation model for one of the test rigs 
and incorporated existing models for two consignment 
types. We identified the most influential parameters on 
the simulation results through exhaustive parameter 
screening. Using Bayesian optimization with batch evalu-
ations, we determined the optimal parameter values to 
minimize discrepancies between the simulated and real-
world movement trajectories. Finally, we validated the 
simulation models against additional independent real-
world experiments, finding that the simulation results fell 
well within the range of variation observed in these exper-
iments. 

[Keywords: CEP, small consignment, polybag, simulation, 
MFBD, parametrization] 

teigende Sendungszahlen in der Kurier-, Express- 
und Paket (KEP) Branche und ein Wandel im Sen-

dungsspektrum von quaderförmigen Kartonagen hin zu 
forminstabilen Kleinsendungen stellen Hersteller und Be-
treiber von Sortieranlagen vor große Herausforderun-
gen. Bestehende Anlagen werden den aktuellen Anforde-
rungen häufig nicht mehr gerecht. Während der Einsatz 
von Physiksimulationen zur Entwicklung neuer Anlagen 
heute bereits gängige Praxis ist, sind diese für die Model-
lierung forminstabiler Kleinsendungen ungeeignet. 
Kürzlich wurde ein neuartiger Simulationsansatz für 

forminstabile Kleinsendungen entwickelt. Die vorlie-
gende Arbeit erweitert diesen Ansatz durch Parametrie-
rung der Simulationsparameter und Validierung der Si-
mulationsergebnisse. Zunächst wurden die 
Bewegungstrajektorien und Durchlaufzeiten von vier 
verschiedenen Kleinsendungstypen auf drei Versuchs-
ständen mit verschiedenen Fördertechnik-Modulen, wie 
Gurt- und Röllchenförderern bei unterschiedlichen För-
dergeschwindigkeiten ermittelt. Anschließend wurde ein 
Simulationsmodell für einen der Versuchsstände erstellt 
und bestehende Modelle für zwei Sendungstypen inte-
griert. Durch eine umfassende Parameteruntersuchung 
wurdend die Parameter mit dem größten Einfluss auf die 
Simulationsergebnisse identifiziert. Mittels paralleler 
Bayes'scher Optimierung wurden die optimalen Parame-
terwerte, bei denen die Unterschiede zwischen den simu-
lierten und den realen Bewegungstrajektorien minimiert 
werden, ermittelt. Abschließend wurden die Simulations-
modelle anhand zusätzlicher unabhängiger Realversuche 
validiert. Dabei lagen die Simulationsergebnisse deutlich 
innerhalb der Schwankungsbreite dieser Versuche. 

[Schlüsselwörter: KEP, Kleinsendung, Polybag, Simulation, 
MFBD, Parametrierung] 

1 INTRODUCTION 

The courier, express and parcel (CEP) sector has ex-
perienced rapid growth in recent years. One of the main 
contributors to this development has been the ever-increas-
ing importance of e-commerce. In Germany, the number of 
CEP shipments has grown by 167% between 2000 and 
2023, as reported in studies commissioned by the Bun-
desverband Paket und Expresslogistik e. V. (BIEK) [1], [2]. 
There was a slight decline in shipment numbers between 
2021 and 2022, mainly due to the war in Ukraine and high 
inflation rates in Europe, but this effect was only temporary 
as volumes rose again in 2023. Figure 1 provides an over-
view of the historical CEP shipment numbers in Germany 
and the forecasted figures until 2028. 

T 

S 



DOI: 10.2195/lj_proc_ stadlthanner_en_202410_01 

 

  
© 2024 Logistics Journal: Proceedings – ISSN 2192-9084          Page 2 
Article is protected by German copyright law 

 

Figure 1: Historical and forecasted CEP shipment numbers in 
Germany until 2028 [1], [2]. 

Globally, this trend is even more pronounced: the 
number of parcel shipments has risen from 44 billion in 
2014 to 161 billion in 2023, a remarkable increase of 266% 
[3], [4]. This trend is expected to continue both domesti-
cally and globally [2], [4].  

Apart from the increase in CEP shipment numbers, the 
rise of e-commerce has been responsible for two additional 
major developments in the CEP industry.  

First, there has been a shift in market share away from 
business-to-business (B2B) towards business-to-consumer 
(B2C) shipments. While B2C was only responsible for 
52% of shipments in Germany in 2013, this share increased 
to 72% by 2023 [2]. The result of this development is a dis-
proportionally rising number of potential delivery ad-
dresses, which in turn poses challenges for distribution cen-
ter operators.  

Second, there has been a shift in the CEP sector’s ship-
ment spectrum, with traditional rectangular cardboard 
boxes being increasingly replaced by small consignments 
which often feature flexible packaging materials. The rea-
sons for this shift are manifold, but the growing importance 
of Asian countries in e-commerce, particularly China, 
which was reported by 37% of participants in a 2023 study 
as the country of origin for their most recent purchase [5], 
and the prevalence of low-value and low-weight purchases 
in e-commerce [6] are two of the most important factors. 

Small consignments offer a cost-effective and space-
efficient alternative to traditional cardboard packaging. 
However, they present challenges during the sorting pro-
cess. They are often too large for efficient processing by 
mail sorters and too small for parcel sorters, which is why 
they are sometimes referred to as mixed-mail [7]. Addition-
ally, they exhibit other unfavorable characteristics that 
complicate efficient handling, such as high variability in 
packaging materials, which leads to differing friction and 
flexural properties, and issues with contrast that hinder the 
visual identification of labels. 

 

Figure 2: Mixed-mail after bulk unloading from the transporta-
tion containers onto a belt conveyor before singulation and 
sortation [8]. 

In contrast to traditional cardboard packaging, there 
are currently no established regulations for small consign-
ments. The only existing definition, provided by Schadler 
et al. [8], categorizes small consignments and specifically 
plastic polybags (see Figure 2) based on their physical char-
acteristics.  

Small consignments use a variety of packaging mate-
rials, including plastic and kraft paper, some with air cush-
ioning for added protection. This diversity in packaging 
materials and contents results in significant variability in 
physical characteristics such as flexibility, friction, size, 
and mass, which present challenges in handling and sort-
ing. Currently, there are limited automated machine solu-
tions for processing small consignments, leading to in-
creased manual handling and higher costs. The minimum 
spacing required on sorters for mixed-mail items, espe-
cially with roller conveyors, is often greater than for tradi-
tional parcels to prevent missorting, which further reduces 
throughput and increases costs [8]. While private couriers 
can refuse problematic shipments, postal operators are re-
quired by the universal service obligation to deliver all 
types of mail and packages that meet basic requirements 
[9].  

To improve the efficiency of mixed-mail processing, 
new automated material handling equipment tailored to 
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these needs such as the FreeFallSorter [10], a novel gravity-
driven sorting concept, is necessary. Ideally, such equip-
ment should be modular to adapt to changing market de-
mands and packaging regulations. A key challenge in de-
signing and testing new solutions is selecting appropriate 
test specimens due to the diverse nature of small consign-
ments. Stadlthanner et al. [11] addressed this challenge by 
employing clustering to identify common categories of 
mixed-mail items, thereby simplifying the selection pro-
cess.  

Another challenge is the high cost and long develop-
ment cycles associated with physical prototypes. Virtual 
prototyping has been successfully employed in various in-
dustries such as automotive and aerospace to drastically re-
duce development costs, and time to market and optimize 
products. Manufacturers of material handling equipment 
have also successfully adopted virtual prototyping using 
physics simulations [12]. However, these simulations cur-
rently only model rigid bodies, and do not account for the 
intricacies of small consignments with flexible packaging. 
To address this gap, Leitner et al. developed a simulation 
model for the simulation of small consignments with flexi-
ble packaging using multiple flexible body dynamics 
(MFBD), which combines multibody dynamics (MBD) 
and finite element analysis (FEA) [12], [13]. While initial 
tests showed that the model exhibits realistic behavior, the 
simulation results have yet to be validated against real-
world experiments. The study identified the influence of 
various simulation parameters on the simulation results and 
determined optimal values through calibration tests, though 
it did not include material pairing parameters, such as fric-
tion values. Our study aims to address these gaps by intro-
ducing a novel approach to optimizing the simulation pa-
rameters for an MFBD simulation model for small 
consignments with flexible packaging, and by validating 
the simulation results against real-world experiments. 

In the first part of our study, we conducted real-world 
experiments using four different test rigs along with four 
consignment types, based on the clustering results by 
Stadlthanner et al. [11]. The test rigs feature various con-
veying technologies, such as belt conveyors and roller con-
veyors, operated at different speeds. We analyzed these ex-
periments using computer vision to track the trajectories of 
the test specimens and photoelectric sensors to measure 
transit times. In the second part of the study, we utilized 
existing simulation models developed by Leitner et al. [11] 
for two consignment types. We then modeled the relevant 
conveying technology for one of the test rigs and incorpo-

rated the consignment models into this setup. We per-
formed parameter screening using factorial designs to iden-
tify parameters with statistically significant effects on the 
simulation results. We then used Bayesian optimization 
with batch evaluations to determine the optimal parameter 
values, aiming to minimize the discrepancies between the 
simulation results and real-world experiments. Finally, we 
validated the simulation models against additional real-
world experiments not used in the optimization process. 

Our study bridges the gap between current virtual pro-
totyping capabilities and the advanced simulation models 
needed to meet the market demands posed by the preva-
lence of small consignments, thereby facilitating the devel-
opment of more efficient material handling solutions. 

2 METHODS 

This study was conducted using a systematic multi-
stage approach consisting of the following stages.  

1. Real-world experiments (section 2.1):  First, we 
conducted and analyzed real-world experiments, 
using three test rigs and four consignment types. 
The data gathered in this process served as the 
foundation for the subsequent parametrizations 
and validations of the simulation models. 

2. Simulation model (section 2.2): Next, we cre-
ated a simulation model for one of the test rigs 
and incorporated existing models for two con-
signment types.  

3. Parameter screening (section 2.3): We then 
performed a screening of the simulation model 
parameters. This stage aimed to narrow down the 
parameter space and focus on the factors that 
have the largest impact on different performance 
indicators.  

4. Parametrization (section 2.4): Building on the 
results of the parameter screening, we employed 
Bayesian optimization to find parameter values 
that minimize the difference between the simula-
tion and real-world experiment results for differ-
ent target values.  

5. Validation (section 2.4.3): Finally, we validated 
the optimized simulation models against inde-
pendent real-world experiments to ensure the 
generalizability of our models. 
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2.1 REAL-WORLD EXPERIMENTS 

2.1.1 TEST CONSIGNMENTS 

We used the four types of consignments shown in Fig-
ure 3 for our experiments. These consignment types are the 
result of an extensive cluster analysis by Stadlthanner et al. 
[11]. 

KP/BW 

 

PB 

   

KP 

 

BW 

Figure 3: Overview of the consignment types kraft paper/bubble 
wrap (KP/BW), polybag (PB), kraft paper (KP) and bubble 
wrap (BW) used in this study [13]. 

The dimensions of the consignments and their contents 
as well as the mass of each consignment type are summa-
rized in Table 1. Here, the column “consignment type” re-
fers to different packaging types. KP/BW has an outer kraft 
paper (KP) and an inner bubble wrap (BW) layer, whereas 
consignment types KP and BW only have a single layer of 

the corresponding material. Polybag (PB) refers to a plastic 
bag made of low-density polyethylene (LDPE) and is the 
only consignment type that has a flexible (non-rigid) con-
tent.  

Further details on the structure and manufacturing pro-
cess of these consignments can be found in [13]. 

2.1.2 EXPERIMENTAL SETUP 

In our study we used the three test rigs “Belt-Belt” 
(E1), “Flow splitter” (E2), and “Induction” (E3). Each test 
rig was used for a series of experiments, in which the con-
veying speeds and the consignment types described in the 
previous section were varied. The speeds were set to two 
(for test rigs E2 and E3) and three (for test rig E1) prede-
fined levels, respectively.1 Each test case2 was repeated ten 
times, using ten distinct test specimens of the correspond-
ing consignment type to avoid wear-related effects. 

Test rig E1, illustrated in Figure 4, is a serial combina-
tion of two belt conveyors, with a mean conveying speed 
of 0.62 m/s for the first conveyor for each experiment and 
0.81 m/s, 1.00 m/s, and 1.57 m/s for the second one for the 
speed settings 1, 2 and 3, respectively. The test consign-
ments were placed at an angle of 30° at a fixed position on 
the first conveyor.  

Test rig E2, depicted in Figure 5, consists of conveyor 
belt modules and a flow splitter module – a matrix of piv-
oting roller units – and comprises two tests. In E2a, the test 
specimens were conveyed in a straight direction, while in 
E2b the test consignments were diverted onto a strip con-
veyor aligned at a 30° angle to the flow splitter module. 
The speed settings were 0.6 m/s and 1.0 m/s, respectively, 
for all conveyer modules in both E2a and E2b. 

Table 1: Test consignments used in this study [13]. KP: Kraft paper, BW: Bubble wrap, PB: Polybag. 

Consign-
ment Type 

Length 
[cm] 

Width 
[cm] 

Height 
[cm] 

Length content 
[cm] 

Width content 
[cm] 

Height content 
[cm] 

Mass 
[g] 

KP/BW 27.5 20 2 16.5 12.5 2 140 

PB 31.5 22.5 2 31 22.5 2 180 

KP 32 25 3 31 22.5 3 380 

BW 20 15 2 16.5 12.5 2 80 

 

1 We used a hand tachometer to compare the set speeds with the 
actual speeds, with deviations in the single-digit percentage 
range being measured depending on the setting. The speeds 
stated in this section refer to the measured values. While the 
speeds were largely constant, we were able to detect short-term 
deviations of up to 3% from the measured mean values. 

2 A test case is a given combination of test rig, test consignment 
and speed setting and comprises ten experiments with identical 
conditions. 
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Figure 4: Schematic diagram of test rig E1 (not to scale). There 
are two belt conveyors (1 and 2) with the conveying speeds 
𝑣ଵ and 𝑣ଶ, respectively. Test consignments (3) are placed 
on conveyor (1) using a guide (4). Two photoelectric sen-
sors (PS) are used to measure the transit times of test con-
signments between two pre-defined points. 

 

Figure 5: Schematic diagram of test rig E2 (not to scale). Test 
consignments (4) are placed on a belt conveyor (1) using a 
guide (5). In E2a, the test specimens are conveyed in a 
straight direction across the flow splitter module (2). In 
E2b, the specimens are diverted onto a strip conveyor (3). 
Photoelectric sensors (PS) are used to measure the transit 
times of test consignments between two pre-defined points. 

 

Figure 6: Schematic diagram of test rig E3 (not to scale). Test 
consignments (3) are placed on a strip conveyor (1) using a 
guide (4). A sheet metal plate (5) is used to guide the con-
signments towards the center of the belt conveyor (2). Pho-
toelectric sensors (PS) are used to measure the transit times 
of test consignments between two pre-defined points. 

Test rig E3, shown in Figure 6, consists of a strip belt 
conveyor and a conventional belt conveyor. The strip belt 
conveyor is 2 cm higher than the belt conveyor and is 
aligned at a 30° angle to it. For practical reasons, it was 

necessary to mount a metal plate to guide the test speci-
mens toward the center of the belt conveyor. The convey-
ing speed of the strip belt conveyor was 1.64 m/s for both 
speed settings, while that of the belt conveyor was 1.56 m/s 
and 1.86 m/s for speed settings 1 and 2, respectively. 

We measured the transit times of the test specimens 
using SICK RAY26P-24162330A00 photoelectric sensors. 
We also utilized a downward-facing GoPro HERO 11 cam-
era, which was mounted at a height of approximately 2 m 
above the conveyor level to record video footage of the ex-
periments with a resolution of 5312 by 2988 pixels and a 
frame rate of 60 frames per second. We then postprocessed 
the videos in Python using the OpenCV library [14] and 
extracted movement trajectories. To achieve this, we at-
tached AprilTags [15], a two-dimensional visual fiducial 
system commonly used in robotics, to the consignments to 
uniquely identify each consignment and track its x- and y-
coordinate as well as its orientation during the conveying 
process. Another set of four AprilTags, placed along the 
side walls of the conveying equipment at known positions 
served as the coordinate system and was used to transform 
the image coordinates to real-world coordinates, with the 
use of a homography matrix. We validated the accuracy of 
this method in a controlled environment with AprilTags 
placed in various known locations, finding a maximum 
measurement error of 3 mm, representing a remarkable 
level of accuracy. 

We then used the transit times and movement trajecto-
ries to select a reference experiment for each test case. To 
achieve this, we compared the differences in transit times, 
the translational trajectories of the consignment centers in 
the conveying plane, and the angular changes over time be-
tween all ten experiments of a given test case using distance 
matrices. The entries of the distance matrix 𝑫௧ with respect 
to the transit times are defined by: 

𝐷time(𝑖, 𝑗) = ൫𝑇௜ − 𝑇௝൯
ଶ

, 

where 𝑇௜  denotes the transit time of consignment associated 
with the experiment 𝑖. To quantify the distances between 
pairs of translational trajectories and pairs of angular 
changes, we used dynamic time warping (DTW) [16], an 
algorithm based on dynamic programming for measuring 
the (dis-)similarities between time series. Let DTW(𝑿௜ , 𝑿௝) 
denote the DTW-distance between the time series of  𝑿௜(𝑡) 
and 𝑿௝(𝑡) , where 𝑿௜(𝑡) represent the two-dimensional co-
ordinates of the center of the consignment associated with 
experiment 𝑖 over time 𝑡. In the case of multi-dimensional 
time series, DTW requires the specification of a local or 
pointwise distance function – Euclidean distance in our 
case. We defined the entries of the distance matrix 𝑫DTWೣ,೤

 

with respect to translatory movement: 

𝐷DTWೣ,೤
(𝑖, 𝑗) = ቀ𝐷𝑇𝑊൫𝑿௜ , 𝑿௝൯ቁ

ଶ

(1) 
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The squaring of the DTW-values was done to put a 
stronger emphasis on large deviations between time series. 
Similarly, for the rotatory motion, the entries of the dis-
tance matrix 𝑫DTWഇ

 are defined as 

𝐷DTWഇ
(𝑖, 𝑗) = ൫𝐷𝑇𝑊(𝜽௜ , 𝜽௝)൯

ଶ
, 

where 𝜽௜(𝑡) denotes the angular orientation around the z-
axis3 of the consignment associated with experiment 𝑖 over 
time 𝑡. Since 𝜽௜(𝑡) is one-dimensional, the local distance 
function for DTW(𝜽௜ , 𝜽௝) is trivially given by the absolute 
difference between two scalar values. DTW distances were 
computed using the Python implementation of dtw-Pack-
age [17], originally implemented for R.  

Each distance matrix was then normalized by dividing 
all entries by the largest entry of the corresponding matrix, 
yielding the normalized distance matrices 𝑫෩ time, 𝑫෩ DTWೣ,೤

 

and 𝑫෩ DTWഇ
. We then combined these matrices into a single 

combined distance matrix  𝑫combined by summing the re-
spective normalized matrices: 

 𝑫ୡ୭୫ୠ୧୬ୣୢ =  𝑫෩ time +  𝑫෩ DTWೣ,೤
+  𝑫෩DTWഇ

 

Finally, to identify the reference experiment 𝑖∗, we cal-
culated the vector of row sums4 𝒔 of 𝑫ୡ୭୫ୠ୧୬ୣୢ: 

𝒔(𝑖) =  ෍  𝑫ୡ୭୫ୠ୧୬ୣୢ
௝

(𝑖, 𝑗) 

Here, 𝑖∗ is the row corresponding to the minimum value of 
𝒔: 

𝑖∗ = argmin
௜

𝒔(𝑖) 

The translatory and rotatory movements, 𝑿௜∗(𝑡) and 
𝜽௜∗(𝑡) respectively, serve as target values for the parametri-
zation of the simulation parameters. 

2.2 SIMULATION MODEL 

The advent of sophisticated computational techniques 
has significantly enhanced our ability to simulate and ana-
lyze complex mechanical systems. Among these tech-
niques, multi flexible body dynamic (MFBD) is particu-
larly noteworthy for its integration of the strengths of multi-
body dynamics (MBD) and finite element analysis (FEA). 
This approach allows for the detailed modeling of both the 
overall motion and the internal deformations of flexible 
consignments interacting with various sorting and convey-
ing facilities. 

 

3 Coordinate systems according to Figures Figure 4 to Figure 6. 

2.2.1 CONSIGNMENT MODELS 

Leitner et al. [12] have proposed a bottom-up strategy 
for the modeling of flexible consignments in a step-by-step 
manner using the simulation software RecurDyn [18] and 
have described the modeling possibilities of various types 
of consignments. In a follow-up study [13], Leitner et al. 
further developed their approach to model consignments 
based on the clustering results by Stadlthanner et al. [11]. 
The authors also provide a detailed analysis of the various 
parameters and their effects on various simulation results. 

KP/BW 

 

PB 

   

KP 

 

BW 

Figure 7: Simulation models for the consignment types kraft pa-
per/bubble wrap (KP/BW), polybag (PB), kraft paper (KP) 
and bubble wrap (BW) used in this study [13]. 

The consignment contents can be categorized as either 
rigid or flexible, which influences their modeling approach. 
Rigid contents, found in consignments KP/BW, KP, and 
BW, maintain their structural integrity during transporta-
tion, making them suitable for rigid body modeling. Each 
model is adjusted for density and geometric parameters and 
is represented as simple cuboids with rounded edges. In 
contrast, flexible contents, such as those in consignment 
PB, require a more sophisticated approach. The use of fi-
nite volume elements allows for the effective simulation of 
material flexibility, thereby capturing deformations and 
movements under varying loads [13]. The packaging layers 
are modeled as finite shell elements, connected at their 
edge nodes, and pulled apart by external forces. The con-
tents are then placed between the layers and the external 
forces are removed causing the packaging to enclose the 
contents through contacts, thus completing the consign-
ment models, as shown in Figure 7. These consignment 
models can then be used in various experimental setups. A 
more detailed description of the modeling of the consign-
ments and the various parameters can be found in [13]. Our 
study uses models for consignment types KP/BW and PB. 

4 Since all distance matrices are symmetric, column sums could 
also be used. 
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2.2.2 EXPERIMENTAL SETUP 

Due to time and budget restrictions, the simulations in 
our study are limited to the E3 test rig setup. Future re-
search will focus on simulating the other test rigs. The sim-
ulation model for test rig E3 is made up of flexible con-
veyor belts, metal sheets, and rollers. Shell elements are 
used to model the conveyor belts. The belts are driven by 
rollers, with one driven roller and one passive roller per 
belt. In addition to conveyor belts and rollers, numerous 
plates are required to complete the model. These are mod-
eled as rigid bodies and placed appropriately to complete 
the overall models. Figure 8 shows the simulation model 
for test rig E3 with consignment type PB. 

 

 

Figure 8: Simulation model of test rig E3 showing the movement 
of consignment type PB at different time steps. 

2.3 PARAMETER SCREENING 

The simulation models described in section 2.2 con-
tain a wide range of physical parameters. While a small 
number of parameters such as Poisson’s ratio were set to 
values from the literature or left at default values, a total 
number of 16 and 18 parameters were initially investigated 
for consignment types KP/BW and PB5, respectively. To 
limit the search space for the parametrization, we con-
ducted a three-stage parameter screening using the re-
sponse values DTW௫,௬ and DTWఏ. These values represent 
the DTW distances between the translatory and rotatory 
movements of the reference experiment  𝑿௜∗(𝑡) and 𝜽௜∗(𝑡) 
respectively, and the corresponding simulation results. In 
the first stage, we employed a two-level fractional factorial 
design of resolution IV for the 16 parameters associated 
with test rig E3 and consignment type KP/BW at speed set-
ting 2 to eliminate any insignificant parameters. In the sec-
ond stage, we employed a two-level full factorial design 
using the remaining parameters, to more accurately quan-
tify their main effects as well as their interaction effects on 

 

5 Consignment type PB has a flexible content that requires the 
specification of the additional parameters Young's modulus and 
damping ratio. 

the response values. We then used the results of this screen-
ing stage to inform our decision on the parameters used for 
the parametrization of test rig E3 and KP/BW consignment 
type. In the final stage, we conducted another two-level full 
factorial design, incorporating all statistically significant 
parameters from the second stage as well as the two addi-
tional parameters for the PB consignment type as the basis 
for the parameter selection for the E3 test rig and the PB 
consignment type. 

It should be noted that the selection of parameters for 
parametrization always represents a compromise between 
computational effort and model accuracy and it therefore 
rarely makes sense to blindly use all statistically significant 
parameters for parametrization. For this reason, we set an 
upper limit of four parameters for the parametrization in 
this study due to the high computational cost of the simu-
lations and selected the parameters based on the effect sizes 
in stages two and three.  

Table 2 offers an overview of the parameters and cor-
responding parameter ranges analyzed in stages two 
(KP/BW) and three (PB) of the parameter screening pro-
cess. While the parameters 𝐸Co and 𝜁Co don’t exist in the 
simulation model for consignment type KP/BW due to its 
rigid content, the parameters 𝑘MePa and μMePa

s  were ex-
cluded from the full factorial design in stage three since 
their effect sizes in stage two were negligible. 

2.4 PARAMETER OPTIMIZATION 

2.4.1 OPTIMIZATION METHOD SELECTION 

The task of finding a set of parameter values for a 
physics simulation that best approximates real-world be-
havior is an optimization problem in which the difference 
between a real-world experiment and a corresponding sim-
ulation is to be minimized with respect to one or several 
target values. Over the years, a myriad of optimization al-
gorithms belonging to different classes have been pro-
posed, all of which have their strengths and weaknesses, 
making it difficult to select a suitable algorithm for a par-
ticular optimization problem. For this reason, numerous at-
tempts have been made to create taxonomies for different 
optimization algorithms. One of the most comprehensive 
taxonomies is the one proposed by Stork et al. [19], which 
distinguishes between exact6, hill-climbing, trajectory-
based, population-based, surrogate-based, and hybrid 
methods.  

6 Exact methods are reviewed in [19] but not part of the proposed 
taxonomy. Due to the nature of the optimization problem associ-
ated with the parametrization of simulation models, these meth-
ods will not be explored in our study. 
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Table 2: Parameters investigated using two full factorial designs for consignment types kraft paper/bubble wrap (KP/BW) and polybag 
(PB). The underlying physical models implemented in the simulation software RecurDyn are summarized in [13]. 
 

Parameter Description Unit 

Range  
(default value) 

KP/BW PB 

1 𝑘CoPa Stiffness coefficient: content/packaging N/mm 
100 – 1000 

(500) 
100 – 1000 

(500) 

2 𝑘MePa Stiffness coefficient: metal/packaging N/mm 
100 – 1000 

(611) 
- 

3 𝜇BePa
d  Dynamic friction coefficient: belt/packaging - 

0.3 – 0.6 
(0.45) 

0.3 – 0.6 
(0.45) 

4 𝜇MePa
d  Dynamic friction coefficient: metal/packaging - 

0.15 – 0.35 
(0.25) 

0.15 – 0.35 
(0.25) 

5 𝜇MePa
௦  Static friction coefficient offset: metal/packaging - 

0 – 0.3 
(0.15) 

- 

6 𝐸Pa Young's modulus: packaging N/mm² 
200 – 1600 

(1000) 
50 – 200 

(100) 

7 𝐸Co Young's modulus: content N/mm² - 
0.05 – 0.5 

(0.08) 

8 𝜁Co Damping ratio: content - - 
0.01 – 0.1 

(0.04) 

Hill climbing algorithms are local search algorithms, 
based on greedy exploitation with minimal exploration, and 
have fast convergence to a local optimum. Well-known ex-
amples are the Nelder-Mead method [20] and various gra-
dient descent and stochastic gradient descent algorithms 
[19]. 

Trajectory-based algorithms are similar to hill-climb-
ing algorithms but place a stronger emphasis on exploration 
by using information from successive function evaluations. 
These algorithms iteratively develop an initial solution, ac-
cepting worse solutions in some circumstances to avoid lo-
cal optima. Simulated annealing [21] and tabu search [22] 
are prominent examples of this class [19]. 

Population-based approaches, in contrast to trajectory-
based approaches, develop multiple solutions simultane-
ously, often utilizing search strategies inspired by pro-
cesses found in nature. In some cases, two or more solu-
tions may be combined to create new solutions. Due to their 
distributed nature and strong emphasis on exploration, 
these approaches often require a relatively high number of 
function evaluations and tend to be slow to converge. Well-
known examples include particle swarm optimization [23] 
and genetic algorithms [19]. 

Surrogate-based optimization aims to estimate the be-
havior of the target function by fitting a regression or sur-
rogate model to data obtained from function evaluations. 
This is particularly useful for functions that are expensive 
to evaluate, as surrogate evaluations are usually several or-
ders of magnitude faster. Initially, the function is sampled 
at various points using sampling strategies such as factorial 
designs or Latin hypercube sampling (LHS) [24], and a sur-
rogate model is constructed from these observations. This 
surrogate model then identifies new candidate points for 
evaluation, typically by optimizing an acquisition function. 
The purpose of an acquisition function is to solve the ex-
ploration-exploitation dilemma by combining uncertainty 
(exploration) and predicted performance (exploitation) of 
surrogate model predictions into a single value. Common 
acquisition functions include expected improvement (EI) 
[25] and upper confidence bound (UCB) [26]. Due to the 
high computational performance of surrogate model pre-
dictions, sophisticated optimization algorithms can be used 
when searching for new candidate points. In each iteration, 
one or more new candidate points are evaluated by the orig-
inal function, updating the surrogate model. This process 
continues until a stopping criterion is met. The effective-
ness of surrogate-based methods depends on the choice of 
surrogate model, acquisition function, and the associated 
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hyperparameters [19]. While this description mainly ap-
plies to Bayesian optimization (BO), arguably the most im-
portant sub-category of the surrogate-based optimization 
class, other surrogate-based approaches may follow differ-
ent steps. 

Methods that are based on the combination of concepts 
from one or more of the optimization classes outlined 
above are labeled hybrid approaches in the guideline. Since 
the class of hybrid approaches is large and heterogeneous, 
it will not be discussed in more detail in this study. 

In addition to the algorithm taxonomy, the authors in 
[19] propose an algorithm selection guideline, which is 
shown in Figure 10. 

The optimization problem in our study has the follow-
ing properties: 

 black box function with complex nonlinear fit-
ness landscape and multiple local optima 

 multiple objectives (minimizing both DTW௫,௬ 
and DTWఏ with respect to the reference experi-
ment) 

 expensive evaluations7 

 noisy observations due to numerical noise and 
stochastic effects  

 constrained continuous input variables 

 very small evaluation budget 

Applying the algorithm guideline to these properties, 
it is obvious that most algorithm classes are not suitable for 
the given problem. Surrogate-based methods are the most 
appropriate optimization class for the problem at hand. 
Bayesian optimization and similar surrogate-based ap-
proaches are commonly used in parametrization and cali-
bration tasks in other domains such as discrete element 
method (DEM) simulations (e. g. [27], [28], [29], [30], 
[31]). For this reason, we opted for Bayesian optimization 
in our study. The following section describes the details of 
the algorithm we used. 

2.4.2 BAYESIAN OPTIMIZATION WITH BATCH 

EVALUATIONS 

The surrogate-based approaches discussed in section 
2.4.1 apply to most forms of BO. Figure 9 illustrates the 
concepts underlying BO.  

 

7 Simulating the movement of a consignment on test rig E3, with 
a simulated time of under two seconds, takes about five hours. 

 

Figure 9: Bayesian optimization illustration: The Gaussian pro-
cess (GP) was fitted to (noisy) observations from function 
evaluations. The bottom plot shows the Upper Confidence 
Bound (UCB) acquisition function, with its maximum indi-
cating the next candidate point. 

A black-box function is evaluated at various points, 
with observations being noisy, as indicated by the error 
bars. Next, a surrogate model—a Gaussian process in this 
case—is fitted to these observations. Depending on the 
chosen kernel and its hyperparameters, a Gaussian process 
can model uncertain observations. Consequently, the mod-
el's predictions at previously observed points may differ 
from the actual observed values, and the variance remains 
greater than zero, as shown by the non-vanishing confi-
dence interval areas at the observation points. The bottom 
plot shows the acquisition function, which is to be maxim-
ized. The input value corresponding to the maximum of the 
acquisition function is the next candidate point. Upper 
Confidence Bound (UCB) is a commonly used acquisition 
function as it is simple and has been shown to perform well 
in benchmarks [26]. It is defined as 

UCB(𝑥) = μ(𝑥) + λσ(𝑥), (2) 

where 𝜇(𝑥) and 𝜎(𝑥) are the mean and standard deviation 
of the surrogate model at sample point 𝑥, respectively and 
𝜆 is a hyperparameter, that can be tuned to balance explo-
ration (𝜎) and exploitation (𝜇) explicitly.  

The search in BO is inherently sequential, since the 
surrogate model is updated every time new candidate 
points are evaluated. However, numerous attempts have 
been made to parallelize BO by evaluating multiple points 
simultaneously (refer to [32], [33], [34]). In this study, we 
employed a parallelizing approach based on k-means clus-
tering of the acquisition space, which has demonstrated ex-
cellent performance in benchmark studies [35], [36], [37]. 
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Figure 10: Algorithm selection guideline, mapping function properties, and evaluation budget to suitable algorithm classes [19]. 

2.4.3 PROPOSED PARAMETRIZATION METHOD 

Figure 11 provides a flowchart of the algorithm used 
in our study. For the optimization loop (dashed rectangle in 
Figure 11) we used the Python library Mango8 [36], [37], 
which is partially based on the algorithm proposed by 
Groves and Pyzer-Knapp [35].  

 

Figure 11: Flowchart of the optimization approach used in this 
study. 

The optimization starts with an initial sample. We used 
LHS with a sample size of 16. Next, 16 copies of the sim-
ulation model were created, and the model parameters were 

 

8 Source code available on GitHub [38]. 

adjusted accordingly. These simulations were run in paral-
lel and postprocessed, once completed. The cost function 
to be minimized is a weighted sum of DTW෫

௫,௬
ଶ  and DTW෫

ఏ
ଶ. 

𝑐 = 𝑤௫,௬DTW෫
௫,௬
ଶ ൫𝑖∗, sim𝒑൯ + 𝑤ఏDTW෫

ఏ
ଶ(𝑖∗, sim𝒑) (3) 

Here DTW෫
௫,௬(𝑖∗, sim𝒑) and DTW෫

ఏ(𝑖∗, sim𝒑) repre-
sent the normalized DTW distances between the simulation 
time series 𝑿sim𝒑

(𝑡) and 𝜽sim𝒑
(𝑡) with parameter set 𝒑 and 

the corresponding values of the reference experiment 𝑖∗. 
We used the same normalization factors as in the normali-
zation of the distance matrices described in section 0 and 
set the weights 𝑤௫,௬ and 𝑤ఏ  to 1. We excluded segments of 
the conveying systems from the DTW comparisons where 
the test consignments interacted solely with a single belt 
conveyor without any obstacles. Our focus was on the "in-
teresting" sections of the technology, ensuring that compar-
isons were limited to areas with more complex interactions. 
Small safety margins around these "interesting" sections 
were included to capture inertia-induced movement in the 
analysis. Furthermore, in the DTW comparisons, we con-
sidered only the relative changes and not the absolute val-
ues of 𝑿(𝑡) and 𝜽(𝑡) with respect to the initial positions 
and orientations. This approach minimized the impact of 
variations in the initial placement of the test consignments 
on the resulting DTW distances.  
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In the next step of the algorithm, a surrogate model is 
initialized from the points of the initial sample and the cor-
responding cost values.9 In our study, the surrogate model 
was a Gaussian process with a Matérn kernel where the hy-
perparameter ν, which controls the smoothness of the re-
sulting model, was set to 5/2. Matérn kernels are a popular 
choice due to their high flexibility [39] and good perfor-
mance in benchmark studies [40]. For this we used the 
Gaussian process implementation of the Python library 
Scikit-learn [41]. It was necessary to allow for noisy obser-
vations in the Gaussian process to avoid numerical prob-
lems and overfitting. This was done by adjusting the regu-
larization parameter alpha. Experimentation showed that 
setting alpha to 0.35², where 0.35 is the standard deviation 
of the noise, represents a good balance between model ac-
curacy and generalization. 

The algorithm then uses Monte Carlo sampling to 
maximize the UCB acquisition function. For each sample 
point, the surrogate model makes a prediction that yields 
the mean cost value and standard deviation, which are used 
to calculate the UCB according to eq. (2). The 25% of sam-
ple points with the highest UCB values are then selected 
and clustered using k-means, with 𝑘 = 4 in our case. The 
clustering separates the sample points into spatially distinct 
regions. For each cluster, the sample point with the largest 
UCB value is chosen as a new candidate point, and all four 
candidate points are then simulated in parallel and the sur-
rogate model is updated with the new simulation results. 
This process continues until a stopping criterion is reached.  

In our study, we implemented a stopping criterion 
based on validation experiments, inspired by the training 
protocols of artificial neural networks. After every five it-
erations, the optimization is paused to perform a validation 
experiment. This involves simulating a validation run with 
the best parameters identified so far but at a speed setting 
not used for the parametrization. If the validation is suc-
cessful, the optimization process terminates; otherwise, it 
continues for an additional five iterations. Our study con-
siders three validation criteria: 

1. Transit time: The transit time of the simulated 
consignment must fall within the range observed 
in the real-world experiments. 

2. DTW𝒙,𝒚: The simulation experiment is added to 
the set of real-world experiments and the dis-
tance matrix is computed using the DTW௫,௬ met-
ric as defined in eq. (1). For each experiment, the 
mean distance to all other experiments is calcu-
lated. Validation is considered successful if the 
mean distance of the simulation is not greater 

 

9 For practical reasons we maximized −𝑐 rather than minimizing 
𝑐 in our approach. 

than the largest mean distance of the real-world 
experiments. 

3. DTW𝜽: This criterion is similar to the previous 
one but uses the DTWఏ metric instead of 
DTW௫,௬. 

Using a stopping criterion based on validation experi-
ments offers three primary advantages over criteria directly 
tied to the optimization process. First, the optimization 
halts as soon as a valid parameter set is identified, limiting 
unnecessary iterations to a maximum of four. Second, it 
circumvents the need to define arbitrary boundaries such as 
objective value thresholds, total iteration runs, or patience 
windows10. Third, while termination criteria based on opti-
mization processes can be susceptible to overfitting, our ap-
proach helps mitigate this risk by allowing for earlier ter-
mination. 

3 RESULTS AND DISCUSSION 

3.1 REAL-WORLD EXPERIMENTS 

Depending on the test rig and speed setting, we ob-
served statistically significant differences in the transit time 
distributions between the different consignment types (re-
fer to Figure 13). We utilized pairwise Mann-Whitney U 
tests and adjusted the p-values using the Benjamini-
Hochberg procedure [42] to control the false discovery rate 
(FDR) at 5%. The results indicate that the PB consignment 
type consistently exhibited the slowest or second-slowest 
median transit times across all test rigs and speed settings. 
This consignment type is distinguished by its flexible pack-
aging and limp contents, features that are considered prob-
lematic by manufacturers and operators of sorting systems. 
These findings confirm the perceived issues with polybags 
as reported by experts in the field and are in line with prior 
findings by Schadler et al. [8] regarding transit time delays 
for consignments with flexible packaging on flow-splitting 
equipment. Our study extends these previous findings by 
incorporating additional test rigs and varying conveyor 
speeds. 

The BW consignment type, the smallest and lightest in 
this study, achieved the fastest transit times on test rig E1. 
This behavior can be partly explained by the small dimen-
sions of this type, which facilitate a quicker transition from 
the first to the second belt, resulting in faster acceleration 
to belt 2 speed, compared with the other consignment 
types. However, this speed advantage does not exist or is 
reversed in the other test rigs, especially at speed settings 2 
and 3, where there is also a comparatively large variance in 
transit times for BW. In test rigs E2a and E2b, both featur-

10 Number of iterations to wait before the optimization stops if 
no progress is made. 
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ing a flow splitter module, this variance is caused by un-
controlled collisions of BW consignments with flow split-
ter rollers, resulting in chaotic jumping behavior observed 
at high conveying speeds. 

Finally, in test rig E3, transit times are primarily influ-
enced by the degree of rotation a consignment experiences. 
Consignment type BW is particularly prone to rotation, of-
ten being rotated by more than 180°, while consignment 
type KP, on the other extreme, experiences minimal rota-
tion during the conveying process. The rotation depends on 
the consignment's physical properties and the relative angle 
at which it collides with the sheet metal plate. Upon colli-
sion, consignments either slide along the sheet metal or flip 
around, with the extent of rotation significantly impacting 
their transit times. 

3.2 PARAMETER SCREENING 

We conducted an initial parameter screening for test 
rig E3 and consignment type KP/BW using a fractional fac-
torial design of resolution IV (see section 2.3). Among the 
16 parameters included in the fractional factorial design 
𝑘CoPa, 𝑘MePa, 𝜇BePa

d , 𝜇MePa
d , 𝜇MePa

s  and 𝐸Pa exhibited statisti-
cally significant effects (p < 0.05). These parameters were 
subsequently analyzed using a full factorial design. Figure 
14 shows the standardized effect sizes of these factors and 
their two-factor interactions from the full factorial design 
for the response values DTW௫,௬ (top) and DTWఏ  (bottom). 
The effect sizes, sorted from largest to smallest, are limited 
to the 10 largest effects. The parameters 𝑘MePa and 𝜇MePa

s , 
along with any interactions involving them, did not show 
statistically significant effects, while the other four param-
eters did exhibit significant effects. Despite its significant 
impact on DTW௫,௬, we excluded 𝑘CoPa from the parameter 
optimization due to slow convergence when 𝑘CoPa was in-
cluded. The parameter screening for consignment type PB 
was based on the screening results for consignment type 
KP/BW. We conducted a single full factorial design in-
volving the two parameters 𝐸Co and 𝜁Co, unique to the con-
signment type, along with the four significant factors of the 
previous full factorial design and adjusted parameter levels 
(see Table 2). The results of this design, presented in Figure 
15, show significant effects for the parameters 𝜇BePa

d , 𝜇MePa
d , 

𝐸Pa, 𝐸Co and 𝜁Co. Due to the small effect sizes of  𝜁Co and 
its interactions, we excluded this parameter from the pa-
rameter optimization to limit the size of the search space.  

3.3 PARAMETER OPTIMIZATION AND VALIDATION 

3.3.1 OPTIMIZATION RESULTS 

For the parametrization of the simulation models asso-
ciated with test rig E3 and consignment types KP/BW and 
PB, we employed the approach detailed in section 2.4.2. 
LHS with a sample size of 16 was used for the initial sam-
pling. In the Bayesian optimization process, we utilized a 
batch size of four, meaning that each iteration comprised 

four parallel simulations with varying parameters. Figure 
12 illustrates the progression of the best objectives (as de-
fined by the cost function in eq. (3)) found by the optimi-
zation for both consignment types.  

 

Figure 12: Best objectives found by iteration for consignment 
types KP/BW and PB. Validation experiments, indicated by 
the vertical lines, were performed every five iterations. The 
optimization was stopped once the validation was success-
ful. 

After every five iterations, validation experiments 
were conducted using the best parameters found until this 
point. Note that in the case of KP/BW, the validation was 
omitted after the tenth iteration since no new best solution 
had been found. The optimization process was halted once 
all three validation criteria (as defined in section 2.4.2) 
were satisfied. For consignment type KP/BW the best pa-
rameter set was identified after twelve iterations and vali-
dated after 15 iterations. Considering the initial sample size 
of 16, a batch size of four and the two validation experi-
ments the total number of simulations performed was 78 in 
this case. For consignment type PB, valid parameters were 
identified after just five iterations, resulting in a total of 37 
simulations. The computations were performed on an 
AMD Ryzen 9 7950X 16-core CPU, requiring approxi-
mately 120 hours for consignment type KP/BW and 52 
hours for consignment type PB. The identified parameter 
sets for both consignment types are summarized in Table 
3. 

Table 3: Optimized parameter values for consignment types 
KP/BW and PB with test rig E3. 

Parameter Unit 
Value 

KP/BW PB 

𝜇BePa
d  - 0.300 0.565 

𝜇MePa
d  - 0.346 0.350 

𝐸Pa N/mm² 506 196 

𝐸Co N/mm² - 0.358 
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Figure 13: Comparison of transit time distributions between different consignment types by test rig and speed setting for the real-
world experiments. The comparisons were performed using pairwise Mann-Whitney U tests with Benjamini-Hochberg correc-
tion [42] to control the false discovery rate at 5%. 
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Figure 14: Pareto plots of standardized effects with respect to the objectives DTW௫,௬  (𝑙𝑒𝑓𝑡) 𝑎𝑛𝑑 DTWఏ (𝑟𝑖𝑔ℎ𝑡) for the simulation of 
test rig E3 with consignment type KP/BW. 

 

  

Figure 15: Pareto plots of standardized effects with respect to the objectives DTW௫,௬  (𝑙𝑒𝑓𝑡) 𝑎𝑛𝑑 DTWఏ (𝑟𝑖𝑔ℎ𝑡) for the simulation of 
test rig E3 with consignment type PB.

3.4 VALIDATION RESULTS 

The validation was performed on test rig E3, using the 
same experimental setup as for the parametrization, but 
while speed setting 1 was used for optimization, speed set-
ting 2 was used for validation. The validation results for 
KP/BW are summarized in Figure 16. The chart on the left 
shows the distribution of transit times of all real-world ex-
periments as well as the simulation (blue diamond). While 
the transit time for the simulation is at the upper end of the 

distribution, it is still clearly within the range of fluctuation 
of the real-world experiments. The center and right charts 
show the distributions of the mean DTW௫,௬- and DTWఏ-
distances for all real-world experiments and the simulation 
experiment. For both cases, the simulation has a lower-
than-average mean distance, indicating that the simulation 
results are in very good agreement with the real-world ex-
periments. This fact is further emphasized when comparing 
the trajectories and changes in angle between the real-
world experiments and the simulation (see Figure 17). 
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Figure 16: Boxplots of the validation experiments for the simu-
lation of test rig E3 with consignment type KP/BW at speed 
setting 2. For 𝐷𝑇𝑊തതതതതതത

௫,௬ and 𝐷𝑇𝑊തതതതതതത
ఏ the mean DTW distance 

of an experiment to the other experiments was calculated. 

 

Figure 17: Changes in x- and y- y-coordinates (top chart) and 
changes in angle over x-coordinate (bottom chart) of real-
world experiments (gray) and simulation (blue) for consign-
ment type KP/BW on test rig E3 at speed setting 2. 

The corresponding validation results for consignment 
type PB are presented in Figure 18 and Figure 19. Although 
all three validation criteria are met for this consignment 
type, the trajectory comparison (Figure 19, top chart) re-
veals some discrepancies between the real-world experi-
ments and the simulation. Specifically, the real-world con-
signment contents exhibited a greater tendency to deform 
upon impact with the sheet metal, causing the centers to 
shift further to the right, a phenomenon not replicated in the 
simulation. It is unclear if this discrepancy arises from in-
correct parameter selection (especially 𝐸Co) or inaccuracies 
in content modeling (refer to section 2.2.1). This finding 
further highlights some limitations of the validation criteria 
employed in our study. Despite the simulation achieving a 

below-average mean DTW௫,௬, thus satisfying this valida-
tion criterion, the trajectory comparison indicates a small 
yet distinct difference between simulation and real-world 
experiments.  

Overall, while our findings indicate that the simula-
tions generally align well with real-world data, some re-
finements to the validation criteria may be necessary. 

 

Figure 18: Boxplots of the validation experiments for the simu-
lation of test rig E3 with consignment type PB at speed set-
ting 2. For DTW௫,௬ and DTWఏ the mean DTW distance of 
an experiment to the other experiments was calculated. 

 

Figure 19: Changes in x- and y- y-coordinates (top chart) and 
changes in angle over x-coordinate (bottom chart) of real-
world experiments (gray) and simulation (red) for consign-
ment type PB on test rig E3 at speed setting 2. 

4 CONCLUSION AND OUTLOOK 

This study aimed to analyze the movement behavior 
of different types of small consignments on three test rigs 
comprising various kinds of conveying technologies. In the 
first part of the study, we conducted real-world experiments 
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to measure transit times and movement trajectories. Our 
findings revealed statistically significant differences in 
transit times between the different consignment types, 
which we discussed in detail. In the second part of the 
study, we created a simulation model for one of the test rigs 
and incorporated existing simulation models for two con-
signment types. We performed a multi-stage parameter 
screening to assess the impact of various simulation param-
eters, such as friction coefficients and flexural properties, 
on the simulation results. Subsequently, we utilized Bayes-
ian optimization with batch evaluations to determine the 
values for the most influential parameters. The para-
metrized simulation models were validated by comparing 
their outcomes against independent real-world experi-
ments, demonstrating that the results fell within the ob-
served range of variation. However, for consignment type 
PB, a small discrepancy between the movement trajectories 
of the simulation and the real-world experiments was ob-
served, which was not detected by the validation criterion 
used in our study. Therefore, future research should focus 
on refining validation criteria to robustly detect outliers in 
movement trajectories. The parametrization framework 
presented in our study represents a step towards bridging 
the gap between existing virtual prototyping capabilities 
and the capabilities needed to develop new material han-
dling solutions tailored to the requirements of small con-
signments with flexible packaging. Additionally, the pa-
rameter values identified in our study can serve as starting 
points for further simulation tasks involving similar equip-
ment and material combinations, though validation will be 
necessary in such cases. 

Further research will involve simulating more test rigs 
and additional consignment types to expand the applicabil-
ity of our findings. It remains to be seen whether the pa-
rameters found in our study will yield valid results in other 
setups using the same material pairings. Efforts should also 
be directed towards streamlining the calibration process to 
make it more accessible, e.g., by utilizing simpler test rigs 
that generalize better to other scenarios, though the current 
study has laid a solid foundation. Incorporating an addi-
tional objective that better captures the flexural behavior of 
the consignment packaging could further improve para-
metrization accuracy, particularly for parameters related to 
flexural properties. Enhancing the validation criteria and 
conducting additional validation experiments will be criti-
cal in ensuring the robustness of the simulation models. Fi-
nally, exploring alternative simulation approaches and 
frameworks with faster computation times will be benefi-
cial to enhance efficiency and scalability in future studies. 

 

11 The writing has been elaborated with the use of ChatGPT 
(13.05.2024 version) by OpenAI (https://chat.openai.com/chat) 
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