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his work explores the challenges of fully automating
in-house goods transport in environments where in-

dustrial trucks like forklift trucks remain necessary due 
to undefined load carrier positions and shapes. Imitation 
Learning (IL) is identified as a promising solution for ve-
hicle control in repetitive tasks, yet its application in in-
tralogistics is challenging by the dynamic complexity of 
industrial trucks and the large dimensional space in-
volved. A Robot Operating System 2 (ROS2) framework 
is introduced, enabling the acquisition of driving data 
from both simulation environments and real-world de-
monstrators. The study also presents a network architec-
ture combining a Convolutional Neural Network (CNN) 
with a Long Short-Term Memory (LSTM) network, fa-
cilitating end-to-end learning from spatial and temporal 
image data. The framework's effectiveness is evaluated 
using a dataset of expert driving maneuvers to assess the 
generalization potential of the IL-trained network in ve-
hicle control in different scenarios. The research aims to 
demonstrate the utility of the proposed framework for 
data acquisition and validate IL as a control approach for 
industrial trucks that require generalization. 

[Imitation Learning (IL), industrial truck automation, intralo-

gistics, ROS2, load handling]

n dieser Arbeit werden die Herausforderungen der
Vollautomatisierung des innerbetrieblichen Waren-

transports in Umgebungen untersucht, in denen manuell 
geführte Flurförderzeuge aufgrund von undefinierten 
Positionen und Formen der Ladungsträger weiterhin 
notwendig sind. Imitation Learning (IL) wird als eine 
vielversprechende Lösung für die Fahrzeugsteuerung bei 
sich wiederholenden Aufgaben identifiziert, jedoch wird 
seine Anwendung in der Intralogistik durch die Komple-

xität der Dynamik von Flurförderzeugen und dem gro-
ßen abzubildenden Dimensionsraum erschwert. Es wird 
ein Robot Operating System 2 (ROS2) Framework vor-
gestellt, dass die Erfassung von Experten Fahrdaten so-
wohl aus Simulationsumgebungen als auch von realen 
Demonstrator Fahrzeugen ermöglicht.  Darüber hinaus 
wird eine Netzwerkarchitektur präsentiert, die ein Con-
volutional Neural Network (CNN) mit einem nachge-
schalteten Long Short-Term Memory (LSTM) Netzwerk 
kombiniert, um aus Bild- und Geschwindigkeitsdaten so-
wohl räumliche als auch zeitliche Informationen zu erler-
nen.  Evaluiert wird die Effektivität des Frameworks an-
hand eines Datensatzes mit Expertenfahrmanövern, 
wobei das Generalisierungspotential des trainierten Net-
zes für die Fahrzeugsteuerung bewertet wird. Ziel der Ar-
beit ist es, den Nutzen des vorgeschlagenen Frameworks 
für die Datenerfassung zu demonstrieren und IL als Steu-
erungsansatz für Flurförderzeuge zu validieren. 

[Imitationslernen (IL), Flurförderzeug-Automatisierung, Intra-

logistik, ROS2, Lasthandhabung] 

1 INTRODUCTION  

The realization of fully automated, in-house goods 
transport is still limited to clearly defined routes and stor-
age areas. In storage areas where no defined position or 
shape of the individual load carriers can be specified due to 
their scope of use, manually guided industrial trucks con-
tinue to be used even though the transport task of picking 
up a load carrier is also clearly defined in these areas. A 
precise and robust approach for the vehicle control is re-
quired in order to ensure the continuous and reliable 
transport of goods by previously manually guided indus-
trial trucks. 
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In recent years, IL has shown promising results in 
overcoming challenges for which there is a defined solution 
path using expert data. IL algorithms can accurately repli-
cate how experts behave in known environments using an 
end-to-end approach [1]. Thereby the accuracy and robust-
ness of the various IL algorithms depend significantly on 
the amount and quality of the expert data. as shown in [2]: 
“if the expert and learner share the same policy space, then 
the policy is always imitable”. 

Since industrial trucks have a high level of dynamic 
complexity and the dimensional space to be mapped is very 
large, the use of IL in intralogistics is associated with major 
challenges. In this context, not only a control approach with 
a certain degree of generalization is required, but also a var-
iable design of the data acquisition process is necessary to 
be able to efficiently record data for different driving sce-
narios.  

This thesis presents a Robot Operating System 2 
(ROS2) framework that can be used for the acquisition of 
driving data both from the Nvidia Omniverse Isaac Sim 
simulation environment and from real demonstrators. Fur-
thermore, the trained network architecture by IL is pre-
sented. It consists of a Convolutional Neural Network 
(CNN) in combination with a downstream Long Short-
Term Memory (LSTM) to apply end-to-end learning not 
only to the spatial analysis of a single image, but also to the 
temporal information of time-sequential image frames. The 
data set used for training comprises various positions and 
orientations of a DIN EN 13698-1 Euro pallet and is rec-
orded according to the proposed framework. Based on the 
used network architecture and data set, the generalization 
potential of the trained network architecture with IL is eval-
uated in known and unknown situations for the vehicle con-
trol of an industrial truck. The aim is both to present a 
framework for manual data acquisition in a simulated in-
tralogistics environment utilizing a human expert driver 
and demonstrate IL as a control approach for industrial 
trucks that require a certain degree of generalization.  

For this purpose, the thesis is structured as follows: 
The second section presents an overview of related work, 
while the third section presents the proposed framework. 
The fourth section shows the experimental setup with the 
results of the generalization study, and the last section sum-
marizes the results of the work. 

2 RELATED WORK 

The concept of end-to-end learning was first presented 
by Pomerleau et al. in 1989. They used a three-layered neu-
ral network to observe the curvature of the road, in order to 
output the steering angle of a land vehicle and navigate on 
the road [3]. This lane keeping behavior was extended by
Müller et al. to include obstacle avoidance, in which depth 
information can be extracted via two front cameras in order 
to drive a small vehicle in an end-to-end approach [4]. With

the continuous increase in computing power, deep neural 
networks have been increasingly used for the autonomous 
control of vehicles. Bojarski et al. extended the two-camera 
system and trained a 3-camera CNN-based model (DAVE-
2) for steering control of a vehicle in a series of real-world
driving scenarios [5]. This was one of the key points that
brought end-to-end systems to the forefront of autonomous
vehicle research. Another publication by Bojarski et al. fo-
cuses on identifying the objects and regions that are of cru-
cial relevance for the network in Paper [5] to determine
steering angles. The results demonstrate that the features
used by the network in relation to the scene are very similar
to those of a human [6]. The works in [7], [8], [9] are further
examples of CNN-based end-to-end learning approaches to
control the steering of an autonomous vehicle. In order to
also exploit temporal dependencies between consecutive
images, M. Lee and Y. Ha present a combination of CNN
with an LSTM for steering angle control [10]. The combi-
nation of CNN and LSTM enabled the extraction of both
temporal and spatial features. The proposed method was
trained only for the steering wheel angle using a driving
simulator. Hecker et al. argue that human drivers usually
have access to more data than autonomous vehicles. They
propose to provide end-to-end systems with input infor-
mation about their entire environment. A system of eight
cameras is used together with a route planner to provide
high-level action information. Each camera is fed into a
network consisting of several CNN and LSTM sub-net-
works. Subsequently, the information from the cameras
and the map is fused to produce future speed and guidance
predictions. The inclusion of additional information leads
to a significant increase in performance [11]. Haavaldsen
et al. show that by combining CNN and LSTM, end-to-end
systems can operate autonomously in simple urban envi-
ronments by controlling steering angle and speed. Further-
more, it is found that utilizing temporal information in sub-
sequent images improves the system's ability to judge
movement and distance [12]. Chi and Mu also show a
model that uses the LSTM architecture. They model the
steering angle as a continuous variable. The LSTM net-
work is trained to minimize the loss between the predicted
steering angles to those of an expert. The architecture of the
network consists of two individual sub-networks. The first
network processes the visual environment and the internal
status of the vehicle. The second sub-network is the steer-
ing prediction sub-network, which is responsible for the
steering output. The feature extraction subnet performs a
spatio-temporal convolution to model the sequential learn-
ing problem of autonomous steering. The steering predic-
tion network fuses multiple types of temporal information
to make the steering, speed and torque predictions [13]. For
performance analysis, the method is compared with com-
peting algorithms such as AlexNet [14] and PilotNet [6],
and outperforms them both in predicting steering angle. Le
Mero et al. give an overview of the state of the art in imita-
tion learning methods, their applications in the field of au-
tonomous vehicles and discuss open challenges. The field
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is divided into three main approaches: Behavioural Clon-
ing, Direct Policy Learning and Inverse Reinforcement 
Learning. As IL is a data-based approach, like many other 
deep learning paradigms, the overview also summarizes 
existing datasets and simulators and examines their poten-
tial applications [1]. This overview can serve as an initial
starting point for researchers and provide a comprehensive 
overview of existing research. 

3 PROPOSED FRAMEWORK 

3.1 ARCHITECTURE AND DATASET RECORDING 

To record datasets of the driving behavior of an expert 
forklift truck driver we are presenting a ROS2 Framework 
which can be applied both in real world and simulated en-
vironments. With focus on simulated environments, we are 
explaining the core components of our framework includ-
ing a dataset recorder as well as a suited data loader to han-
dle the recorded datasets for training a neural network.  

The process of recording a dataset in a simulated envi-
ronment is illustrated in Figure 1. A human expert driver is 
controlling the simulated forklift truck with the help of a 
physical gamepad. The framework utilizes the ROS2 Joy 
Package which takes care of reading the actual gamepad 
raw state. The raw input data is then forwarded to the 
gamepad node over a ROS2 topic. Inside the gamepad node 
the raw input data is translated into application specific 
driving commands. To mimic the real-world forklift truck 
driving behavior, a dedicated controller node is necessary 
to provide the correct joint commands for driving the fork-
lift truck inside the simulation. This configuration depends 
on the simulated vehicle and must be adapted individually. 

The provided sensor data of the simulated forklift 
truck as well as the driving commands are then recorded by 
the dataset generator node and stored as a ROS Bag. A ROS 
Bag is a file format in ROS2 for storing ROS message and 
topic data. We differentiate between datasets and single 
runs. A dataset always consists of one or more single runs 
where each run is representing a trajectory from the forklift 

trucks initial position to the forklift truck’s goal position. 
Every dataset itself is only representing one kind of trajec-
tory. The initial forklift truck position and the goal forklift 
truck position are always the same. Only the course of the 
trajectory differs inside the dataset. Single runs are stored 
as ROS Bags and multiple single runs form a dataset. All 
datasets are recorded with a fixed frequency which is pre-
defined by the gamepad node. All topics are recorded with 
respect to the driving commands publishing frequency. 
Every timestep is then representing sensor data, images and 
driving commands. This guarantees a lossless dataset with-
out missing any required information for training a neural 
network.  

At every start of a new recording session a unique da-
taset folder is created, and the single runs are stored inside. 
The completed runs are then named with ascending num-
bers. The recording of single runs can be started and 
stopped with the gamepad. Additionally, it can also be de-
cided, if the last recorded run should be saved to the dataset 
or not. For simulated environments an automatic environ-
ment reset can be activated to reset the simulation after a 
successful recording. This sets the forklift truck as well as 
all other simulation members to its initial positions. This 
leads to an easy, fast and time efficient method to record 
human driving behavior.  

For our experiment we use Nvidia’s Omniverse Isaac 
Sim to generate a realistic simulation environment. The vir-
tual forklift truck model “atlas” is taken from Nvidia’s sam-
ple assets. It comes fully rigged and articulated and is sim-
ulation ready. We are controlling the simulated forklift 
truck with a normalized driving command in form of a lin-
ear velocity and a steering angle in the range from -1 to 1. 
The controller node is converting this driving command 
into joint specific arguments to control the back wheel 
speed and the back wheel swivel position of the simulated 
forklift truck. Inside the controller node we are also restrict-
ing the forklift trucks maximum velocity and steering an-
gle.  

The simulated forklift truck is publishing a twist mes-
sage with information about its actual velocity in free space 

Figure 1. Overview of the ROS2 Framework for recording a Dataset. 
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broken into its linear and angular parts. To provide a deeper 
insight into the recorded trajectory, the actual forklift trucks 
absolute position is also recorded.  The simulation environ-
ment is observed with an omniscient top view camera at-
tached to the front of the forklift truck. This camera pre-
sents a 2D top view from a bird's eye perspective. Together 
with the normalized driving commands, this data is rec-
orded into a dataset with the help of the dataset generator 
node and used for training a neural network. 

3.2 DATASET PREPROCESSING 

The recorded datasets will be used to train a model to 
imitate the expert's driving behavior. Therefore, the rec-
orded data needs to be read in by a data loader and parsed 
into a suitable format for processing inside the neural net-
work. We are using our own data loader which can parse 
the recoded ROS Bags in a fast and memory efficient man-
ner. The data loader aims to address the key challenge of 
the slow reading speed of ROS Bags especially when train-
ing a neural network over multiple epochs. Reading in ROS 
Bags file by file, the preprocessing of the recorded data will 
be necessary every time a new training epoch is started. 
This is a time consuming and slow process. Therefore, we 
are using our own, faster data loader. The recorded ROS 
Bags will only be parsed once and the desired data for train-
ing the neural network will then be preprocessed. The pro-
cess is explained in detail based on an image topic:  

First, the recorded image topic will be read in from the 
ROS Bag and parsed into a suitable format. Then, the im-
age will be resized, cropped and normalized. The prepro-
cessed image is then stored and saved inside a temporary 
pickle file. Doing this for every desired topic inside the 
ROS Bags will result in a single pickle file which can be 
fed into a neural network fast.  

For our Experiment we are resizing the recorded RGB 
images from the top view camera from 3 x 960 x 960 pix-
els to 3 x 160 x 160 pixels. Together with the recorded nor-
malized driving commands and the forklift trucks twist ve-
locities we are saving the images to the temporary pickle 
file. 

3.3 MODEL ARCHITECTURE 

We developed our model architecture for IL inspired 
by [15], opting to design and implement a custom CNN for
image classification instead of utilizing a pretrained ResNet 
model. Initially, the observed top view images undergo 
normalization before being processed by the CNN. Con-
currently, the forklift trucks linear and angular velocities in 
free space are normalized and processed through a Multi-
layer Perceptron (MLP) network. The outputs from both 
networks are then concatenated and input into a two-layer 
LSTM network. The Model architecture is illustrated in 
Figure 2. 

The LSTM network's purpose is to incorporate a form 
of memory into our model, facilitating meta-learning [16],
which enhances the model's ability to generalize effectively 
even with limited training data. Following the LSTM net-
work, a classification MLP is employed to project the 
LSTM output onto two scalar values, corresponding to the 
forklift truck's driving commands. 

For training the network weights we utilized the mean 
squared error (MSE) as the loss function and adopted the 
Adagrad optimizer with a fixed learning rate of 0.0005. 
This approach ensures the robustness and adaptability of 
our model in dynamic environments. 

3.4 DEPLOYING THE TRAINED MODEL 

We have trained our model for 300 epochs on a cluster 
of two Nvidia RTX A6000 GPUs. The trained model is de-
ployed via its own dedicated neural network node which 
can be seen in Appendix 1. The trained model can generate 
normalized driving commands in the range from -1 to 1 and 
send them directly to the controller node. The image input 
data for the model is the omniscient 2D camera top view 
and the normalized linear and angular velocity of the fork-
lift truck in free space. Both are preprocessed within the 
ROS node itself. If the pallet is reached correctly, the sim-
ulated environment resets to the starting position itself. 

4 EXPERIMENTAL SETUP 

4.1 EXPERIMENTAL DESIGN 

The experiments were designed to simulate a real-
world scenario where the framework’s capabilities in re-
cording a training dataset and controlling a forklift truck 
with a trained model can be reviewed. The focus lays on 
the evaluation of the capabilities of the trained model when 

Figure 2. Our model architecture consists of a combination of 

CNN and LSTM networks as well as an MLP classification 

network inspired by [15]. 
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providing the top view image. It will be critically assessed 
how the model performs and how the given task is accom-
plished. Therefore, we are describing a scenario where an 
expert driver is told to pick up a pallet in different rotations 
and positions. The palette is rotated and positioned in the 
following ways: 

• In the first situation, the longitudinal axes of the fork-
lift truck and pallet are aligned with a 10-meter gap
between them. In the second and third situation, the
forklift remains in its initial position while the pallet
is shifted 5 meters to the left and right, respectively.

• The pallet is initially aligned with the forklift truck at
a 0-degree angle. The angle is then adjusted in incre-
ments of 5 degrees, ranging from -45 to +45 degrees

The different Positions are exemplary shown in Figure 
3. This leads to 57 possible situations. The expert human
driver is told to drive each situation five times inside the
simulated environment. Each run starts at the initial start
position and ends when the forks of the forklift truck are
fully inserted into the pallet. Taking this into account, the
complete dataset consists out of 285 recorded single runs.

The environment inside the simulation consists of a 
flat grey surface where the forklift truck and the pallet are 
placed on. From above, a simulated light will illuminate the 
area and ensures constant lighting conditions. There are no 
other objects within the simulated environment that could 
influence or distract the neural network. When recording 
the training data set, it is ensured that the pallet is always 
fully recognizable in the top view RGB image. The simu-
lated forklift truck is restricted to a maximum linear speed 

of 1.6 m/s, while the back wheel swivel is limited to a max-
imum steering angle of ±90 degrees. 

4.2 TRAINING DATASET DIVERSITY 

A high level of diversity in the training data is a fun-
damental requirement and significantly influences the per-
formance of the trained model [17]. A dataset that is insuf-
ficiently diverse can readily result in overfitting and poor 
generalizability [18]. To address this issue, it was of im-
portance to ensure comprehensive coverage of potential 
pallet orientations and positions during data collection. Fig-
ure 3 illustrates exemplary the recorded trajectories for 
three pallet positions and three different pallet rotations de-
rived from the training data set. The blue lines indicate tra-
jectories to pallets with a relative angle to the forklift truck 
of 0 degrees. The red lines represent trajectories to pallets 
with a relative angle of -45 degrees. Respectively, trajecto-
ries in green indicate a relative rotation of the pallet of 45 
degrees. As illustrated, the trajectories entered by the ex-
pert human driver and stored in the data sets exhibit slight 
dispersion, ensuring that no trajectory occurs more than 
once in the training data set. Each potential pallet rotation 
and position is represented by precisely five distinct trajec-
tories, thereby reducing bias by ensuring that no situation 
is under- or over-represented in the training data set.  

The distribution of driving data within the entire da-
tasets, derived from the entered trajectories, can be ob-
served in Figure 4 and Figure 5. The percentages of the nor-
malized drive command ranges in the total number of drive 
commands are shown. For the linear velocity drive com-
mand, the range from 0 to 1 is divided into five equally 
sized areas. Similarly, the steering drive command range 
from -1 to 1 is divided into eight areas. 

Figure 3. Exemplary trajectories of the recoded Dataset by a human expert driver. Blue lines indicate a Pallet orientation of 0 

degrees. Red trajectories demonstrate a pallet rotation of 45 degrees and green lines indicate trajectories for a rotation of -

45 degrees.
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As illustrated in Figure 4, the majority of driving oc-
curred within the medium speed range represented by the 
large amount of linear velocity commands from 0.4 to 0.7. 
Linear velocity commands that are both very slow and very 
high represent a significantly smaller proportion of the to-
tal. The reason for this is that the expert adjusts the driving 
behavior depending on the distance between the forklift 
truck and the pallet. This natural behavior introduces a dis-

tortion to the linear velocity driving commands within the 
data set.  

Figure 4. Distribution of the normalized velocity commands in 

the recorded training dataset 

Figure 5. Distribution of the normalized steering commands in 

the training dataset 

Figure 5 illustrates the distribution of the steering com-
mands. It can be seen that very strong steering commands 
do not make up a significant proportion of the data set. The 
data set is dominated by steering commands in the medium 
range, which are used for normal lane corrections. The dis-
tribution of steering commands between the positive and 
negative range is symmetrical. Only in the range from 0 to 

0.1 a bias towards the positive range can be observed. This 
slight bias in the range of 0 to 0.1 is possibly caused by the 
background noise of the gamepad. When looking at Figure 
3 this slight distortion is not visible. The symmetrical ar-
rangement of the palettes also results in symmetrical expert 
trajectories, suggesting that the distortion caused by 
gamepad input has no significant effect. 

4.3 EVALUATION AND RESULTS 

To examine the trained model, we follow two different 
strategies. First, we present the model with known situa-
tions that are completely contained in the training data set. 
The aim is to assess whether the model is able to reproduce 
human expert knowledge. In the second part of the study, 
we present the model with new unknown situations that are 
not included in the training data set. The situations pre-
sented are similar to those in the training dataset and repre-
sent only slight variations. The aim of this study is to eval-
uate the generalization ability of the trained model and the 
network architecture used. For both investigations, we use 
the framework from Appendix 1. The simulated forklift 
truck controlled by the trained model is referred to as the 
agent in the following. 

Just like the human expert, the agent must also com-
plete the situations described in section 4.1 in our study. To 
do this, the agent steers the forklift truck to the pallet based 
on the omniscient top view camera and the forklift trucks 
velocity data. For each situation, the agent is given five at-
tempts to solve it successfully. A trip is considered success-
ful if the forks of the forklift truck are fully immersed in the 
pallet from the correct side and the forklift truck stops au-
tomatically. If the forklift truck touches or moves the pallet, 
this is not taken into account in the assessment. 

4.3.1 INVESTIGATION OF THE REPRODUCIBILITY OF 
THE EXPERT TRAJECTORY 

The results for the first part of the study are shown in 
the table of Appendix 2. The percentage of successfully 
completed trips is shown for the different positions and ori-
entations of the pallet. The color gradient from green (all 
five trips successfully completed) to red (no trip success-
fully completed) highlights the result once again. It is easy 
to see that a pallet that is not subject to a lateral position 
shift can be approached most successfully by the agent. 
This is also shown graphically in the center of Figure 6, 
with the expert trajectories highlighted transparently. The 
deviation of the selected trajectory of the agent is small 
compared to that of the expert. If the pallet is oriented by -
45 degrees (green trajectories), the curve is less pro-
nounced. An orientation of the pallet around 0 degrees 
(blue trajectory) was approached by the expert without any 
steering movements. The agent also successfully ap-
proaches this pallet orientation but achieves this with a 
slightly curved trajectory.  
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A pallet oriented with a negative relative angle is ap-
proached more poorly by the agent. This can also be ob-
served if the position of the pallet is shifted in a negative 
direction. Figure 6 on the left also shows that positively ori-
ented pallets are approached by the agent without any prob-
lems. In this case, the specified expert trajectory is repro-
duced to a lesser extent, but the pallet is still approached 
successfully. The agent also successfully approaches pal-
lets with an orientation of 0 degrees on trajectories very 
similar to those of the expert. Moving the pallet in a posi-
tive direction poses major problems for the agent. None of 
the pallet orientations presented could be approached satis-
factorily. This can also be seen in Figure 6 on the right, 
where the agent attempts to approach the pallet from the 
opposite side when it is rotated by -45 degrees. The devia-
tion from the expert trajectory in the training data set is sig-
nificant in this case. Only the pallet oriented at 45 degrees 
was approached by an expert-like trajectory. The pallet ori-
ented at 0 degrees could not be approached by the agent.  

In principle, the knowledge contained in the training 
data set can be reproduced by the agent. Extreme positive 
or negative angles in the orientation pose a challenge for 
the agent. Approaching positions that are shifted in a posi-
tive direction cannot be solved satisfactorily. One possible 
reason for this behavior is the bias in the training data, 
which contains slightly more steering commands in one di-
rection. Moreover, the number of expert trajectories uti-
lized for agent training may be insufficient. 

4.3.2 INVESTIGATION OF GENERALIZABILITY IN 
UNKNOWN SITUATIONS 

The generalization capability of the agent is examined 
with the help of a new, unknown position and with new, 
unknown rotations of the pallet. Based on the results from 

the reproducibility study, it was decided to examine only a 
negative shift of -2.5 m of the pallet. The results can be seen 
in the table of Appendix 3 for the unknown position with 
known rotation and in Appendix 4 for the unknown posi-
tion and unknown rotation. 

A slightly altered pallet position with small rotational 
deviations does not pose a challenge, and the pallet is ap-
proached correctly. The pallet is approached correctly. 
Larger angle changes in the rotation of the pallet cannot al-
ways be approached correctly. Unlike in the first part of the 
experiment, pallets rotated in a positive direction are more 
difficult situations to solve. This can also be seen in Figure 
7 on the left. To rotate the pallet by 45 degrees, for exam-
ple, the agent must make a double turn. 

The pallet, whose position and rotation are unknown, 
shows very similar results when approached by the agent. 
A slight deviation in the rotation of the pallet does not mean 
that it can no longer be approached. Only with larger rota-
tions in the positive range do difficulties arise again when 
the agent approaches the pallet. 

Overall, the agent solves the unknown situations well. 
The trained model is able to derive driving methods for 
new, unknown situations from previously learned 
knowledge. A change in the angle of rotation of the pallet 
is tolerated more readily than a change in position. The rea-
son for this is that a pallet that has only changed its angle 
requires significantly less adaptation in the driving maneu-
ver than a pallet that has changed its position. Furthermore, 
the data set contains significantly more situations with dif-
ferently rotated pallets than pallets in different positions. 
The data set contains three different pallet positions. On the 
other hand, there are 19 different pallet orientations. 

Figure 6. Exemplary trajectories of the trained neural network agent (thick lines) in contrast to the experts’ trajectories (trans-

parent lines) for known situations. 
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5 CONCLUSION 

In this paper we present a ROS2 framework that can 
be used to record driving data sets in the simulation envi-
ronment Nvidia Omniverse Isaac Sim as well as on a real 
demonstrator. With the help of the presented framework, 
expert trajectories of a simulated forklift truck are recorded 
within the simulation environment. The aim was to suc-
cessfully pick up pallets at different positions and with dif-
ferent orientations relative to the forklift truck. The driving 
data set includes information about the executed driving 
command, a top view 2D camera image from a bird's eye 
view and the current vehicle speed. The recorded human 
expert trajectories form a training data set which is then 
used to train a suitable neural network architecture. By 
training with the recorded expert data, the trained model is 
enabled to independently send driving commands to the 
simulated forklift truck based on the environment infor-
mation. The performance of the trained model is evaluated 
using two different strategies. Situations contained in the 
expert data set are used to evaluate the extent to which the 
expert knowledge can be reproduced by the trained model. 
The generalization ability of the model is evaluated by 
showing unknown situations (situations that are not con-
tained in the training data set). It was found that it is possi-
ble to reproduce the expert knowledge. Difficulties are en-
countered when approaching the pallet, particularly when 
the relative angle to the forklift truck is very large. Good 
generalization was also observed in situations unknown to 
the model. Moving the pallet to an unknown position posed 
a greater challenge for the trained model than turning a pal-
let to an unknown angle. It could be shown that even with 
a limited amount of expert data, the expert knowledge can 

be reproduced well by a trained model. Furthermore, the 
trained model was able to understand slight changes in the 
position and rotation of the pallet and adapt its driving style 
accordingly. The ROS2 framework presented here is there-
fore suitable for collecting data of the driving behavior of a 
human expert driver inside a simulated environment. In the 
Future the utilization of the presented framework will be 
extended to a real forklift truck. For this, the top view cam-
era position will also be replaced by a camera position that 
is permissible on a real forklift truck. The situations shown 
here will then be solved by a trained neural network on a 
real forklift truck. 
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Appendix 1. Deploying the trained model in the ROS2 Framework. 

Appendix 2. Percentage of successfully accomplished trips for known Situations by the trained neural network agent. 

Appendix 3. Percentage of successfully accomplished trips for unknown positions and known orientations of the pallet by the 

trained neural network agent. 

Appendix 4. Percentage of successfully accomplished trips for unknown positions and unknown orientations of the pallet by the 

trained neural network agent. 

x y -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

0 -10 0,2 0,6 0,8 0,8 0,4 0,2 0,8 0,4 0,6 1 0,8 0,6 0,6 0,8 1 0,6 1 0,6 0,8

-5 -10 0,6 0,8 0,4 0,8 0,6 0,2 1 0,8 0,6 0,8 1 1 0,8 1 0,8 0,8 0 1 1

5 -10 0 0 0 0,2 0,2 0,2 0,2 0,2 0,2 0 0 0,4 0,4 0,2 0,2 0,6 0,2 0,2 0,2

Pallet position Pallet orientation

x y -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

-2,5 -10 0,8 1 1 1 1 0,8 0,4 1 1 1 1 1 0,8 0,4 1 1 0,6 0,6 0,6

Pallet position Pallet orientation

x y -42,5 -37,5 -32,5 -27,5 -22,5 -17,5 -12,5 -7,5 -2,5 2,5 7,5 12,5 17,5 22,5 27,5 32,5 37,5 42,5

-2,5 -10 1 1 1 1 1 0,8 0,8 1 0,8 1 1 1 0,8 1 1 0,6 0,6 0,2

Pallet position Pallet orientation
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