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he use of Autonomous Mobile Robots (AMR) plays a

significant role in the automation of intralogistics 

processes. For safe operation and navigation, high locali-

zation accuracy is required. Common AMR systems rely 

on cost-intensive sensors such as LIDAR scanners. To en-

able widespread use of AMRs the industry alternative so-

lutions are required. This study explores stereo camera-

based visual SLAM as a cost-effective alternative to con-

ventional 3D LIDAR-based localization solutions for an 

industrial robot application. Using Stereolabs ZED 2I 

and Intel RealSense D455 cameras with ORB-SLAM3 

and OpenVINS algorithms, we evaluated Mean Absolute 

Pose Error (APE) and Root Mean Square Pose Error 

(RPE). The highest accuracy was achieved with the ZED 

2I with OpenVINS with an APE of 0.17 m and an RPE of 

0.02 m while the use of a RealSense D455 showed an APE 

of 0.33 m with an RPE of 0.02 m. 

[V-SLAM, ORB-SLAM3, VIO, AGVs, localization] 

er Einsatz von Autonomen Mobilen Robotern ist

ein wichtiger Teil der Automatisierung von intra-

logistischen Prozessen. Dabei wird stets eine hohe Lo-

kalisierungsgenauigkeit vorausgesetzt. Gängige AMR-

Systeme basieren auf kostenintensiven Sensoren wie 

LIDAR-Scannern. Um einen breiten Einsatz von AMR 

in der Industrie zu ermöglichen, werden alternative 

Lösungen benötigt. In dieser Studie wird stereokame-

rabasiertes visuelles SLAM als kostengünstige Alter-

native zu herkömmlichen 3D-LIDAR-basierten Loka-

lisierungslösungen für eine industrielle Anwendung 

untersucht. Unter Verwendung von Stereolabs ZED 2I 

und Intel RealSense D455 Kameras mit ORB-SLAM3 

und OpenVINS Algorithmen wurde der mittlere abso-

lute Posenfehler und der mittleren quadratischer Po-

senfehler bewertet. Der ZED 2I mit OpenVINS er-

reichte einen APE von 0,17 m und einen RPE von 0,02 

m, während ORB-SLAM3 mit RealSense D455 einen 

APE von 0,33 m und einen RPE von 0,02 m erreichte. 

[V-SLAM, ORB-SLAM3, VIO, FTS, Lokalisierung] 

1 INTRODUCTION  

The increasing use of Autonomous Mobile Robots 

(AMRs) transporting goods or inspecting industrial envi-

ronments underscores the critical need for precise and 

cost-effective localization solutions. While traditional 3D 

LIDAR-based methods offer high accuracy, their substan-

tial cost and power consumption pose significant chal-

lenges, particularly for power-constrained industrial 

AMRs. Meanwhile, affordable sensors like 2D lasers (e.g., 

RPLIDAR A2M12) are commonly used due to cost con-

straints [1], and they often fall short of delivering the nec-

essary accuracy for industrial applications. Even when 

supplemented with wheel encoder or IMU data, these sys-

tems suffer from issues like error accumulation and drift 

[2], challenging precise localization. Therefore, enhancing 

localization performance, potentially through the integra-

tion of camera-based visual odometry algorithms, is cru-

cial for ensuring that AMRs can navigate and operate reli-

ably in complex industrial settings. 

Stereo camera-based visual SLAM (V-SLAM) uses 

two cameras to capture images from slightly different per-

spectives [3]. The cameras capture rich visual information, 

coupled with their ability to provide depth perception. This 

results in the ability to estimate the distance to objects 
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which is critical for accurate localization, especially in dy-

namic industrial environments [3]. Therefore, stereo cam-

eras present an opportunity to enhance localization accu-

racy and robustness. This research is motivated by the 

challenges with indoor localization faced in deploying au-

tonomous mobile robots (AMRs), such as the robotic re-

search platform at Synergeticon GmbH, shown in Figure 

1, which is designed for autonomous environmental scan-

ning and 3D data collection. 

The accuracy limitations of affordable sensor-based 

localization methods (e.g. 2D laser, wheel encoder, IMU), 

particularly in dynamic industrial environments, highlight 

the need for a more robust and adaptive solution. Research 

has shown that the successful implementation of stereo 

camera-based visual SLAM could significantly enhance 

the autonomy, reliability, and efficiency of AMRs like our 

robot [4]. However, the selection of the optimal visual 

SLAM algorithm and stereo camera system for industrial 

AMR localization remains an open question due to the sig-

nificant variation in the type of cameras and their image 

processing ways, which directly affects V-SLAM perfor-

mance [4]. Common image-capturing methods, such as 

Global Shutter, Rolling Shutter, Time-of-Flight (ToF), and 

High Dynamic Range (HDR), along with factors like 

frame rate, resolution, field of view, and the integration of 

additional sensors (e.g., IMU), can significantly influence 

the performance of selected V-SLAM algorithms [5]. This 

research aims to address those challenges by conducting a 

comprehensive evaluation of different V-SLAM algo-

rithms and stereo camera systems to determine how these 

factors impact performance in industrial AMR robots. 

The central research 

question is: How can ste-

reo camera-based V-

SLAM be optimized to 

serve as a viable alterna-

tive to 3D LIDAR for ac-

curate and cost-effective 

localization in industrial 

AMRs? The study will 

focus on identifying the 

most suitable algorithm-

camera combination that 

delivers the highest lo-

calization accuracy to in-

tegrate into the figure 1 

Robotic research plat-

form setup. The findings 

will contribute to the de-

velopment of more effi-

cient, safe, and affordable AMR deployment strategies in 

intralogistics and manufacturing. The paper is organized 

as follows: after this introduction, we begin with a review 

of the state of the art. Next, we present the system over-

view, where the selected algorithm and its key implemen-

tation factors are discussed. Afterwards, we describe the 

validation methodology. Finally, we discuss the results 

and their implications for industrial applications. 

2 STATE OF THE ART 

The localization of AMR using SLAM is imple-

mented in various approaches using different sensors and 

algorithms (see figure 2).  

Figure 2. V-SLAM vs LIDAR SLAM 

The SLAM approach can be primarily divided into 

two techniques based on the input device used: Visual 

SLAM, which relies on cameras, and LIDAR SLAM, 

which utilizes laser devices. This work focuses on camera-

based systems, specifically on Visual SLAM, which can 

be further categorized into Visual Odometry (VO) and 

Visual Inertial Odometry (VIO). VO relies solely on cam-

era input for motion estimation, making it simpler but po-

tentially less accurate in complex environments. In con-

trast, VIO enhances accuracy by integrating camera data 

with an IMU, offering improved precision, especially in 

dynamic or challenging conditions. 

Visual Odometry is defined as the process of estimat-

ing the robot’s motion (translation and rotation with re-

spect to a reference frame) by observing a sequence of im-

ages of its environment [6]. It serves as the foundation for 

visual SLAM, providing incremental motion estimates 

that enable the robot to track its position and build a map 

of its surroundings. The accuracy and robustness of VO 

directly impact the overall performance of the visual 

SLAM system. VO methods can be divided into monocu-

lar [8] and stereo-camera methods [9]. These methods are 

further divided into feature matching (matching features 

over a number of frames) [10] and feature tracking [11] 

(matching features in adjacent frames). [12] proposed 

methods for obtaining camera motion from visual input in 

both monocular and stereo systems. [13] proposed a stereo 

VO system for outdoor navigation in which the sparse 

flow obtained by feature matching was separated into a 

flow based on close features and a flow based on distant 

features. The rationale for the separation is that small 

changes in camera translations do not visibly influence 

points that are far away. 

While VO only estimates the ego-motion of an agent 

using images, V-SLAM is a process in which a robot is re-

quired to localize itself in an unknown environment and 

build a map of this environment at the same time without 

any prior information with the aid of external sensors (or a 

single sensor). The key contribution in the field of solving 

Figure 1: Robot Setup 
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the problem of V-SLAM was made by the ORB-SLAM3 

[14, 15] algorithm, which currently represents a state-of-

the-art approach, it integrates visual and inertial data to en-

hance accuracy and robustness, especially in challenging 

visual conditions. ORB (Oriented FAST and Rotated 

BRIEF)-SLAM has three parallel processes: The first pro-

cess is the construction of the local camera trajectory by 

matching the observed key points to the local map. The 

second process builds a local map and solves the local bun-

dle adjustment problem, and the last process finds loop 

closures. Moreover, it can trigger a full optimization of the 

entire camera trajectory. 

Other than VO methods Visual Inertial Odometry 

(VIO) approaches are slightly different from SLAM ap-

proaches. They focus on local consistency and aim to in-

crementally estimate the path of the camera/ robot pose af-

ter pose, and possibly perform local optimization. SLAM 

aims to obtain a globally consistent estimate of the camera/ 

robot trajectory and map and contain loop closure. Some 

VIO approaches also implement loop closure but are 

mostly used for accurate pose estimation.  

Open Visual Inertial Navigation System (OpenVINS) 

[16] is a Multi-State Constraint Kalman Filter (MSCKF)

based on a VIO estimator. It uses IMU in the propagation

step of the filter and camera data in the update step. It also

incorporates a loosely coupled loop closure thread based

on VINS-Fusion. VINS-Mono [17] and VINS-Fusion [16]

are graph-based VIO approaches. VINS-Fusion is an ex-

tension of VINS-Mono and supports multiple visual-iner-

tial sensor types (mono camera and IMU, stereo cameras

and IMU, even stereo cameras only). It also has support

for global sensors like GPS and Barometer and has a

global graph optimization module.

The author [18] evaluates various open-source Visual 

SLAM and Visual-Inertial Odometry algorithms. The au-

thors' emphasis on the lack of a universal "out-of-the-box" 

solution and the necessity for algorithm tuning and data 

pre-processing further underscored the importance of con-

ducting a focused comparison tailored to the project’s spe-

cific requirements. Similarly, [19, 20] emphasize that there 

is no single best open-source solution performed in all sce-

narios, reinforcing the need for careful selection and adap-

tation based on the task at hand. 

The state of the art in Visual SLAM has seen signifi-

cant advancements, yet several critical issues persist that 

hinder its widespread adoption in real-world applications. 

One of the most pressing concerns is the reproducibility 

problem, which has become a significant barrier to further 

innovation. As authors [18, 21, 22] highlight, researchers 

often struggle to replicate published results due to poorly 

documented code, insufficient examples, and the necessity 

for extensive algorithm tuning and data pre-processing. 

This issue not only limits the ability to build upon existing 

work but also undermines the credibility of research find-

ings. Addressing this problem is essential for the contin-

ued progress of the field, requiring improved transparency, 

documentation, and accessibility of research outputs. 

Another significant challenge is the absence of a uni-

versal V-SLAM solution that performs optimally across 

diverse environments and scenarios. Current algorithms 

are highly specialized, with performance heavily depend-

ent on factors such as lighting conditions, sensor setup, 

and the specific characteristics of the environment. For in-

stance, as authors [10] note, challenging lighting condi-

tions, including variations in illumination, can severely de-

grade the accuracy of feature detection and tracking. 

Similarly, sensor limitations, such as the resolution, frame 

rate, and field of view of cameras, play a crucial role in 

determining the robustness of V-SLAM systems. Addi-

tionally, monocular V-SLAM suffers from inherent scale 

ambiguity due to the inability of single cameras to measure 

depth directly, often requiring additional sensors or tech-

niques to resolve this issue [19].  

Given that the choice of an algorithm depends heavily 

on the specific environment, the sensor setup, and desired 

performance trade-offs, this study embarks on a detailed 

investigation to identify the optimal Visual SLAM solu-

tion for our robotic platform, which is equipped with two 

cameras. The goal is to ensure robust and accurate indoor 

navigation capabilities. To achieve this, the study com-

pares four different setups, using two distinct algorithms 

and sensor configurations, to determine the most effective 

approach for this particular application. 

3 SYSTEM OVERVIEW 

This section gives a detailed overview of selected 

cameras, criteria for selecting the algorithm, validation 

setup, and obtaining a ground truth to validate the selected 

algorithms.  

3.1 SELECTION OF CAMERA FOR V-SLAM 

The choice of the camera is critical for the perfor-

mance of V-SLAM systems. Stereo cameras offer signifi-

cant advantages over monocular setups, particularly for 

VIO. There are some key benefits of using stereo cameras. 

Firstly, scale ambiguity resolution wherein stereo cameras 

eliminate scale ambiguity by using the baseline distance 

between the cameras, leading to greater accuracy. Sec-

ondly, stereo cameras provide direct depth information, 

enhancing accuracy during large motions and rapid image 

changes, which is crucial for 3D mapping and navigation. 

Another primary importance is the Enhanced Feature 

Tracking. Stereo setups improve feature tracking, espe-

cially in texture-less environments, by triangulating posi-

tions in 3D space. These advantages make stereo cameras 

a superior choice for V-SLAM, offering enhanced robust-
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ness and accuracy. Therefore, to perform visual-based lo-

calization, the two most popular stereo cameras used for 

AI and robotic applications ZED2 [23] and Intel Re-

alSense D455 [24] were chosen. 

3.2 ALGORITHM SELECTION 

Selecting a suitable localization algorithm requires 

meeting key industrial requirements. Accuracy and preci-

sion are a key requirement. For precise navigation, centi-

metre-level accuracy is to be ensured. Real-time perfor-

mance enables instant decision-making and adaptive 

localization, especially for encoder drifts. Compatibility 

with different cameras, sensors, and environments is es-

sential, which can be termed scalability and flexibility. Fi-

nally, the practicality and usability of the algorithms, such 

as the availability of documentation, examples on popular 

datasets, the convenience of the interface, the ability to 

change the parameters of algorithms, and the presence of 

Docker/ROS wrappers are of importance. 

The paper [18] shows the comparison of various 

open-source V-SLAM algorithms based on practicality, 

different popular datasets, CPU, and memory usage. After 

evaluating open-source algorithms based on the above-

mentioned criteria, including ROS1/2 compatibility and 

community support, two VIO, algorithms OpenVINS and 

ORB-SLAM3 were selected.  

To sum up, OpenVINS and ORB-SLAM3 emerge as 

two strong contenders, particularly when considering key 

industrial requirements. OpenVINS shows stability in fea-

ture-sparse environments by effectively leveraging inertial 

data [16]. Its reliance on pre-integrated IMU values signif-

icantly reduces tracking loss, although it requires a com-

prehensive IMU initialization. This robustness ensures re-

liable performance supporting real-time decision-making 

crucial for adaptive localization and mitigating encoder 

drifts. On the other hand, ORB-SLAM3, known for its 

faster initialization and immediate pose estimation, 

demonstrates strong accuracy, particularly with global 

shutter cameras like the D455, although it is more sensitive 

to feature quality and IMU input frequency [18].  

From a practical perspective, OpenVINS is user-

friendly, with extensive documentation, an active support-

ive community, and ease of integration, which aligns with 

the need for scalability and flexibility across different sen-

sors and environments. ORB-SLAM3, while more com-

plex to implement due to its original ROS version depend-

ency and the need for Docker, remains one of the most 

stable, popular, and industrially used SLAM algorithms 

available. However, both algorithms require careful pa-

rameter tuning for optimal performance. Both algorithms, 

despite their differences, provide options for real-world 

applications and are very adaptable to different camera 
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sensors, with OpenVINS being more resilient and ORB-

SLAM3 offering quick, precise localization under ideal 

conditions. 

As this paper mainly focuses on the practical imple-

mentation of real-life data, based on the key requirements 

mentioned above and the comparison from the paper [18] 

OpenVINS and ORB-SLAM3 were the most suited algo-

rithms to perform visual-inertial localization. Some of the 

other alternatives mentioned in the paper [18] include Bas-

alt, Kimera, and OpenVSLAM.  

3.3 EXPERIMENTAL SETUP 

To evaluate the performance of the two localization 

algorithms, a test environment was set up at the Institute 

of Technical Logistics at the Hamburg University of Tech-

nology, utilizing twelve motion capture cameras. Motion 

capture (Mocap) [25] is a technology that tracks the move-

ment of an object or a fixed marker. Its high frequency and 

accuracy, with a precision of up to 0.05-0.11 mm, allow us 

to compare the proposed algorithm against the ground 

truth obtained from Mocap. A trolley served as the base 

platform, with a camera attached to one end of it. Four mo-

tion capture markers were positioned on the trolley as 

shown in figure 3.  

Figure 3. Trolley setup with motion capture markers(left), 

D455 on a tripod at one end of trolley(right) 

Two cameras, namely ZED2 and D455, were used 

to test the algorithms. These cameras were mounted on one 

end of the trolley, as depicted in figure 3. The software 

Qualisys was utilized to define the rigid body system using 

motion capture markers. Additionally, this software pro-

vides a ROS wrapper that can be launched alongside the 

cameras to test the algorithms. This emulates as a moving 

base of an AGV, enabling the camera to traverse the hall 

and assess the performance of the algorithms. 

3.4 CALIBRATION 

Initially, calibrating both cameras ZED2 and D455 is 

required, therefore, the open-source calibration toolbox 

called Kalibr [26] was used to obtain camera intrinsic 

properties. Afterward, it is essential to perform a visual-

inertial calibration, i.e., a spatial and temporal calibration 

of an IMU w.r.t a camera system along with IMU intrinsic 
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parameters. Before performing Visual Inertial Calibration, 

it is important to know how noisy the IMU unit of the cam-

era is. To obtain the intrinsic parameters of the IMU (e.g., 

scales, axis misalignment), it must first undergo calibra-

tion, and the necessary corrections should then be applied 

to the raw measurements. Achieving accurate calibration 

is crucial, as the IMU errors related to the gyroscope and 

accelerometer should remain within acceptable limits. 

3.5 EVALUATION METRICS 

The performance evaluation metrics are divided into 

quantitative and qualitative evaluation. 

Quantitative evaluation includes Mean Absolute 

Pose Error (APE) and Root Mean Square Pose Error 

(RPE).  

• APE is the absolute pose error and is a metric for

investigating the global consistency of a SLAM

trajectory. APE is based on the absolute relative

pose between two poses Pref_i, Pest_i at

timestamp i.

• RPE is the relative pose error and is a metric for

investigating the local consistency of a SLAM

trajectory. RPE compares the relative poses along

the estimated and the reference trajectory. This is

based on the delta pose difference between the

estimated pose and ground truth.

Qualitative Evaluation: 

The qualitative evaluation in this paper is performed 

based on three factors. The first factor is to evaluate based 

on Scenario Handling, which describes how each algo-

rithm performs in environments with few distinguishable 

features. The second qualitative factor is User Experience. 

Feedback from developers who integrated OpenVINS and 

ORB-SLAM3 into their projects, highlighting the ease of 

integration and any challenges faced. The final qualitative 

factor evaluates based on Visual Quality which depicts a 

side-by-side comparison of the trajectories produced by 

both algorithms in a complex environment, with annota-

tions discussing the differences in detail and accuracy. 

4 APPROACH AND IMPLEMENTATION 

This section discusses the implementation of the two 

selected algorithms, OpenVINS and ORB-SLAM3 that 

are used for comparison to perform visual inertial locali-

zation in detail. 

4.1 OPENVINS IMPLEMENTATION 

OpenVINS is an open platform designed to help re-

searchers and engineers quickly develop new capabilities 

for visual-inertial systems. It offers a robust foundation 

with out-of-the-box support for key features commonly 

needed in visual-inertial estimation. These features in-

clude an on-manifold sliding window Kalman filter, online 

calibration for both camera intrinsic and extrinsic parame-

ters, camera-to-inertial sensor time offset calibration, 

SLAM landmarks with multiple representations, and con-

sistent First-Estimates-Jacobian (FEJ) treatments [16]. In 

addition to these technical capabilities, OpenVINS places 

a strong emphasis on detailed documentation and deriva-

tions, making it a valuable resource for both development 

and research within the community. The OpenVINS con-

sists of these key functionalities: 

• ov core – Contains 2D image sparse visual fea-

ture tracking; linear and GaussNewton feature

triangulation methods; visual-inertial simulator

for arbitrary number of cameras and frequencies.

• ov eval – Contains trajectory alignment; plotting

utilities for trajectory accuracy and consistency

evaluation, Monte-Carlo evaluation of different

accuracy metrics, and utility for recording ROS

topics to file.

• ov msckf – Contains the extendable modular Ex-

tended Kalman Filter (EKF)-based sliding-win-

dow visual inertial estimator with a–manifold

type system for flexible state representation.

The main feature that is provided by this algorithm 

estimate the current state of a camera-IMU pair.  The ca-

pability of constructing sparse Jacobians reduces the com-

putational complexity of adding new features and serves 

as an advantage of the OpenVINS algorithm. Instead of 

constructing a Jacobian for all state elements, the “sparse” 

Jacobian needs to only include the state elements that the 

measurement is a function of. This algorithm was used in 

this work due to its ease of use and computation, out-of-

the-box testing, and ability to add and improvise on fea-

tures that can be easily added. Figure 4 shows an example 

of how the algorithm performs with tracking features from 

a stereo-inertial camera.  

One of the most important steps in implementing the 

algorithm is to fine-tune the parameters. With the camera 

placed on our robotic research platform and giving initial-

ization time, three main tuning parameters need to be 

changed to get minimal drift and maximal accuracy of the 

robot’s positions. The three important fine-tuning param-

eters are firstly, Camera calibration parameters which can 

be accessed while obtaining offline calibration. These pa-

rameters are obtained from the calibration data of the cam-

era using the Kalibr toolbox Initialization window time and 

maximum features can be updated based on the number of 

features to capture in an initial sliding window. The ini-

tialization window time was set to 1.5 and the maximum 

number of features to track during initialization was set to 

50. 

Finally, the feature tracking parameters, to update the 

number of tracking features which was set to 450 points as 
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the number of points to track and type of descriptors used.. 

These three tuning parameters were crucial to perform ac-

curate localization. The configuration file also includes 

other tuning parameters [30] that can further be optimized 

for preferred accuracy and application.  

Figure 4 OpenVINS localization from stereo-inertial 

cameras. 

OpenVINS was tested for both ZED2 and D455 on 

stereo-inertial mode. While stereo images for ZED2 are 

RGB images, for D455, the images in stereo-inertial mode 

are infrared and this was used to test OpenVINS. 

4.2 ORB-SLAM3 IMPLEMENTATION 

ORB-SLAM3 is a full multi-map and multi-session 

system able to work in pure visual or visual-inertial modes 

with monocular, stereo, or RGB-D sensors, using pinhole 

and fisheye camera models. ORB-SLAM3 provides a fast 

and accurate IMU initialization, technique, and an open-

source SLAM library capable of monocular-inertial and 

stereo-inertial SLAM [27]. 

In the first part of Visual Inertial SLAM for ORB-

SLAM3, the IMU measurements are taken between con-

secutive visual frames, i and i+1. The pre-integrated rota-

tion, velocity, and position measurements are obtained for 

a whole measurement vector. Combining inertial and vis-

ual residual terms, visual-inertial SLAM can be posed as a 

keyframe-based minimization problem.  

The second part is the IMU initialization. The goal of 

this step is to obtain good initial values for the inertial var-

iables: body velocities, gravity direction, and IMU biases. 

The IMU initialization is considered as a Maximum-a-

Posteriori (MAP) estimation problem which is split into 

three steps: Vision-only MAP estimation, inertial-only 

MAP estimation, and visual-inertial MAP estimation. 

Once there is a good estimation for inertial and visual pa-

rameters, a joint visual inertial optimization is performed 

further. 

The third part involves tracking which solves a sim-

plified visual-inertial optimization where only the states of 

the last two frames are optimized, while map points remain 

fixed. The visual-inertial system enters a visually lost state 

when less than 15-point maps are tracked and achieves ro-

bustness in two stages: 

• Short-term loss: The current body state is esti-

mated from IMU readings and map points are

projected in the estimated camera pose and

searched for matches within a large image win-

dow. The resulting matches are included in vis-

ual-inertial optimization. In most cases, this al-

lows to recover visual tracking. Otherwise, after

5 seconds, we pass to the next stage.

• Long-term loss: A new visual-inertial map is ini-

tialized as explained above, and it becomes the

active map. If the system gets lost within 15 sec-

onds after IMU initialization, the map is dis-

carded. This prevents to accumulation of inaccu-

rate and meaningless maps.

It is important to note that this algorithm requires an 

IMU frequency of at least 100 Hz to perform localization 

[28]. The IMU frequency was set to 200 Hz for both D455 

and ZED2. Upon increasing the IMU frequency, induced 

more noise which affected the tracking of the features and 

noise in the trajectory. Figure 5 shows an example of how 

the path is tracked and mapped on the GUI from ORB-

SLAM3. 

Figure 5 ORB-SLAM3 from stereo-inertial cameras. 

On a reduced frequency, the camera system does not 

require an initial jerk to start the system to initialize the 

features and IMU. The algorithm automatically identifies 

once the command is launched. It also improved the qual-

ity of tracking by fine-tuning two important parameters 

from the configuration. 

The first important parameter is the ORBextractor.fea-

tures. It defines the number of features to be extracted. The 

more the number of features to track, the more accurate the 

system. It is also sensitive to correlate with IMU input. The 

number of features to track was set to 1200. The second 

important parameter is the IMU frequency. This plays a 
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very important role in stereo-inertial mode. Upon increas-

ing the IMU frequency more noise is induced in the accu-

racy of localization. This was set to 200 Hz. These two 

fine-tuning parameters are very crucial for accurate posi-

tional localization for this study. Other fine-tuning param-

eters can be found in the configuration file, and they can 

be optimized for suitable cameras, applications, and re-

quired accuracy. 

5 RESULTS 

This section presents the results of the evaluation of 

two algorithms that were used for localization, ORB-

SLAM3 and OpenVINS. To perform the tests, two cam-

eras were used for comparison, Intel RealSense D455 and 

ZED2. 

5.1 QUALITATIVE (NON-NUMERIC) RESULTS 

This section delves into the qualitative, non-numeric 

assessment of the algorithms, focusing on their scenario 

handling, user experience, and visual quality. The perfor-

mance nuances of OpenVINS and ORB-SLAM3 are dis-

cussed in various operational contexts, highlighting their 

strengths and limitations. 

5.1.1 SCENARIO HANDLING 

OpenVINS’s reliance on inertial data compensated 

for the lack of visual features, maintaining a very stable 

trajectory without relocalization. However, when using the 

D455 stereo camera, the algorithm's accuracy is reduced 

due to the infrared images produced by the camera, which 

are not supported by the algorithm. In feature-sparse set-

tings, OpenVINS showed resilience by effectively utiliz-

ing inertial measurements. ORB-SLAM3 performed 

tracking without any loss with the D455, due to its infrared 

imaging capabilities which were accommodated in the al-

gorithm. The global shutter of the D455 ensured clear and 

undistorted images, which enhanced feature matching and 

overall localization accuracy in ORB-SLAM3. However, 

with the ZED2 camera, performance is poor due to the roll-

ing shutter nature of the camera, which causes motion blur 

and occasionally compromises image quality. Also, when 

the algorithm loses features, it quickly leads to tracking 

loss. This was very often observed in rolling shutter cam-

eras [29] as mentioned in this paper. 

5.1.2 USER EXPERIENCE 

The OpenVINS algorithm is easy to integrate and 

test out of the box and the documentation is very detailed. 

The repository has a very active community answering is-

sues and questions related to the algorithm, making it very 

user-friendly. While implementing ORB-SLAM3, the al-

gorithm was complex due to its original implementation 

on ROS1 compared to the implementation of OpenVINS. 

This required docker and was not actively updated. The 

repository was not very active, although this algorithm is 

one of the most stable SLAM algorithms. Optimizing 

ORB-SLAM3 for diverse environmental conditions re-

quired careful parameter tuning. 

5.1.3 VISUAL QUALITY 

The visual quality of the trajectories from OpenVINS 

and ORB-SLAM3 can be observed in figure 6. OpenVINS 

is not a SLAM algorithm, it does not produce a map upon 

localization. ORB-SLAM3 is a SLAM algorithm, which 

means it can also produce a map and focus on loop closure. 

Since this paper focuses only on VIO, the visual quality is 

restricted and compared between trajectories obtained 

from localization. With IMU integrated along with visual 

input, the tracking of the trajectory is smooth in both 

OpenVINS and ORB-SLAM3 although tracking loss and 

relocalization were experienced higher on ORB-SLAM3.  

5.2 QUANTITATIVE RESULTS 

Table 1 shows an overview of the overall performance 

of ORB-SLAM3 and OpenVINS with D455 and ZED2 

cameras. Table 1 (c,f) shows ZED2 with the OpenVINS 

algorithm performing with a Maximum APE of 0.17 m and 

a Mean APE of 0.41 m. From the table, the positional ac-

curacy of ZED2 with OpenVINS is 0.16 m less than D455 

in ORB-SLAM3 

The first tests were conducted using stereo-only mode 

using ORB-SLAM3. From Table 1. (a,b), it is shown that 

the maximum APE of D455 is 2.17 m less compared to the 

maximum APE error of ZED2. While the mean APE is al-

most 4.12 m for ZED2, it is much lesser for D455 which 

is around 0.70 m. 

A similar evaluation was conducted between the 

D455 and ZED2 cameras to assess the performance of 

ORB-SLAM3 in stereo-inertial mode. During this test, 

ORB-SLAM3 with the D455 camera yielded successful 

results. However, results for the ZED2 camera could not 

be obtained as it failed to localize throughout the entire 

trajectory. This issue was also observed with the D455 in-

itially, but upon reducing the frequency of the IMU, results 

were achieved. This behavior can be attributed to the fact 

that higher IMU frequencies induce more noise in the tra-

jectory. The same approach did not yield positive results 

for the ZED2 camera. It continuously struggled with posi-

tion relocalization, preventing the acquisition of meaning-

ful data for analysis. Therefore, the following data only 

shows the performance of ORB-SLAM3 using D455 in -

inertial mode. Table 1. (a,c) shows that in stereo-inertial 

mode, D455 performs 0.15 m less and better catering to 

the rotational peaks that were encountered in the stereo- 

only mode. The IMU input for localization proves to be an 

important aspect while performing rotational trajectories 

around the environment Table 1 (a,c) shows.that both APE 

and RPE are imporved in stereo-inertial mode compared  
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to the stereo mode of D455.The overall dip in performance 

for ZED2 with ORB-SLAM3 in stereo see Table 1. (b) and 

stereo-inertial mode see Table 1. (d) is because of the roll-

ing shutter property of the camera. This is explained in de-

tail in the Discussion section. 

Finally, the tests using the OpenVINS algorithm were 

conducted with ZED2 and D455. Open-VINS algorithm is 

a VIO algorithm which means that it will not work without 

an inertial input. To test the OpenVINS algorithm, it is re-

quired to provide an initial excitation in all axes of the 

camera to initialize the algorithm. Although loop closure 

is achieved by ZED2, D455 had a lot of sharp lags and 

jerks while following the trajectory and was not able to 

perform loop closure. Table 1. (f,e) shows that the mean 

APE of ZED2 is 0.83 m less compared to the mean APE 

of D455. While the maximum APE for D455 is 0.53 m 

bigger than for ZED2 which is around 0.17 m. Comparing 

the mean RPE of both camera systems, the mean RPE of 

D455 is 0.37 m less than that of ZED2. Although the mean 

RPE of D455 is lesser, it can be observed that the trajec-

tory loop formed by D455 on OpenVINS is inside the tra-

jectory followed by the motion capture leading to a nega-

tive offset in position throughout the loop and has a lot of 

sharp jerks and edges. This shows position values 0.37 m 

less than that given by the ground truth which leads to 

lower RPE. This is due to the stereo images from D455 

being infrared and this affects the features that are used for 

tracking in OpenVINS, which causes the drift in the path. 

OpenVINS works with RGB images and D455 has a mono 

RGB camera on it. Having evaluated both ORB-SLAM3 

and OpenVINS with the D455 and ZED2 camera systems 

individually, the next step involves comparing their re-

spective performances to determine the superior algo-

rithm-camera combination. While ORB-SLAM3 demon-

strates robust performance with global shutter cameras 

Metrics (m) 

ORB-SLAM3 OpenVINS 

Stereo mode Stereo-Inertial mode Stereo-Inertial mode 

D455 (a) ZED2 (b) D455 (c) ZED2 (d) D455 (e) ZED2 (f) 

Max APE 0.48 2.65 0.33 - 0.70 0.17 

Mean APE 0.70 4.12 0.53 - 1.24 0.41 

Max RPE 0.03 0.04 0.02 - 0.01 0.02 

Mean RPE 0.82 1.91 0.18 - 0.16 0.53 

Table 1: Overall performance comparison for ORB-SLAM3 and OpenVINS in stereo, stereo-inertial modes for D455 and ZED2 

Figure 6 Stereo-Inertial performance with ORB-SLAM3 (D455-top) and OpenVINS (ZED2-bottom) 
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like the D455, OpenVINS showcases its strengths in 

odometry-based approaches, with IMU integration, and is 

particularly evident in its compatibility with stereo-inertial 

modes. 

Figure 6 shows the performance of stereo-inertial 

mode in ORB-SLAM and OpenVINS respectively. Figure 

6 shows that both ORB-SLAM3 and OpenVINS perform 

loop closure with respect to the reference motion capture. 

While both performances of ORB-SLAM3 on D455 and 

OpenVINS on ZED2 seem very promising, Table 1 (c,f) 

shows that the mean APE of ZED2 on OpenVINS is much 

lesser compared to D455 on ORB-SLAM3. While ORB-

SLAM3 performs well in global shutter cameras, Open-

VINS does not accommodate infrared images to perform 

localization. Since stereo-inertial mode in D455 provides 

infrared images, this causes the tediousness performance 

from D455 in OpenVINS.  

Based on the results, comparing the performance of 

algorithms with D455 (ORB-SLAM3) from (a,c) and 

ZED2 (OpenVINS) from (b,f), OpenVINS was selected as 

the localization algorithm to implement on our research 

platform. 

6 DISCUSSION 

This section discusses the findings derived from the 

tests and analysis conducted on the algorithms to perform 

visual-inertial localization and gives a clear understanding 

of some of the common issues and problems faced while 

implementing the algorithms. 

Critical Reflection 

From the results of localization in the previous chap-

ter, it is evident that ZED2 showcased the best perfor-

mance using OpenVINS in stereo-inertial mode with a 

maximum APE of 0.17 m and a maximum RPE of 0.02 m. 

This superior performance can be attributed to high-reso-

lution images from ZED2 and the ability of OpenVINS to 

extract features from high-resolution color images. While 

the Intel RealSense D455 demonstrated poor performance 

with OpenVINS because of the infrared nature of the ste-

reo images in stereo-inertial mode, it performed promis-

ingly with ORB-SLAM3 in both stereo and stereo-inertial 

modes. Table 1. highlights that D455 follows a smooth tra-

jectory that adheres closely to the ground truth. The ro-

bustness of ORB-SLAM3 to different lighting conditions, 

combined with the scale and rotation invariance of ORB 

features, contributes to its efficacy, particularly with infra-

red images. 

The performance discrepancy between ZED2 and 

D455 using ORB-SLAM3 can be primarily attributed to 

the nature of the cameras. ZED2, being a rolling shutter 

camera, suffers from motion blur in fast-moving environ-

ments, especially in the stereo-inertial mode where IMU 

input discrepancies accumulate quickly. Conversely, the 

D455, which uses a global shutter, captures the entire im-

age simultaneously, preventing the distortions typically 

caused by rolling shutters in high-speed scenarios. ORB-

SLAM3 also, as an algorithm is very sensitive to the cam-

era being used and based on their calibration parameters. 

The contrary can be seen in OpenVINS wherein, ZED2 

being a rolling shutter camera performs very well in Open-

VINS due to high frame rates that can mitigate the rolling 

shutter distortions. Further, the integration of IMU at high 

frequency compensates for this distortion, leading to good 

performance [31]. 

Global Shutter vs Rolling Shutter 

Global shutter cameras capture the entire image sim-

ultaneously, avoiding the distortions seen in rolling shutter 

cameras, which capture images row by row. This distinc-

tion is crucial in dynamic environments where fast-mov-

ing objects or the camera itself can introduce significant 

distortion. This difference underscores why ORB-SLAM 

performs better with the D455 compared to the ZED2, as 

ORB-SLAM relies heavily on accurate feature matching, 

which is compromised by rolling shutter distortions. 

Therefore, as shown in figure 7, the image captured with a 

rolling shutter, especially the rotary blades of the helicop-

ter, appears deformed compared to the image captured us-

ing a camera with a global shutter. A similar effect will be 

observed when cameras are exposed to very high-speed 

events. This phenomenon can occur in two scenarios: ei-

ther the camera is observing a high-speed object, or the 

camera itself is moving at a very high speed. 

Figure 7 Global shutter(above) and Rolling shutter(below) [32] 

In the context of visual localization for AGV, it can 

be observed that when the robot is moving, the environ-

ment changes dynamically and the camera perceives this 

change in the environment as it is in motion. This affects 

the speed of the scene that immediately changes due to the 

nature of the global shutter or rolling shutter of the camera 

in turn affecting the localization accuracy. Depending on 

the scene perceived by the camera in motion with AGV, 

the localization accuracy depends on the algorithm that is 

being used based on the images. 

10.2195/lj_proc_krishnamurthy_en_202410_01  



© 2024 Logistics Journal: Proceedings – ISSN 2192-9084     Page 10 
Article is protected by German copyright law 

Stereo-Inertial Estimation 

The results further indicate the superiority of stereo-

inertial estimation over stereo estimation, particularly for 

differential robots like ours. Figure 6 shows that inertial 

measurements provide critical data about acceleration, an-

gular velocity, and orientation, compensating for dynamic 

changes and maintaining robust performance across vary-

ing lighting conditions. It is important to perform accurate 

camera calibration in case of visual inertial localization 

since it relies solely on camera streams to extract features 

for localization which can be affected by the intrinsic, and 

extrinsic properties and the camera to IMU transfor-

mations. This capability is vital for avoiding the drifts and 

inaccuracies observed with vision-only based localization, 

ensuring reliable operation in diverse environments. 

Limitations 

Despite the promising results, several limitations 

were identified in the study. The first limitation is the cam-

era type. The ZED2's reliance on a rolling shutter signifi-

cantly hampers its performance in high-speed environ-

ments due to motion blur and the gradual accumulation of 

IMU input discrepancies. This limitation highlights the in-

herent challenges in using rolling shutter cameras for pre-

cise localization tasks in dynamic settings. Secondly, 

ORB-SLAM's sensitivity to rolling shutter distortions lim-

its its effectiveness with rolling shutter cameras like the 

ZED2. Although at high frame rates and high IMU fre-

quency rolling shutter distortions can be compensated, the 

reliance on accurate feature matching makes ORB-SLAM 

vulnerable to distortions that can degrade overall perfor-

mance, emphasizing the need for algorithms that can better 

compensate for such distortions. Upon localizing while the 

robot is moving, this can also lead to motion blur. This re-

mains a challenge during rapid rotational movements 

when relying solely on stereo vision. This blur can lead to 

incorrect pose estimates, underscoring the necessity of in-

tegrating inertial measurements for more accurate position 

estimation, which was seen in ORB-SLAM3. Although 

stereo-inertial estimation proved beneficial, its effective-

ness can be influenced by the specific environmental con-

ditions and the robot's operational context. Ensuring con-

sistent performance across a wide range of scenarios 

requires further refinement and testing to address potential 

variability in results.  

7 CONCLUSION AND OUTLOOK 

This paper discusses the comparison and analysis of 

two different VIO methods that provide accurate tracking 

in industrial warehouses. ORB-SLAM3 and OpenVINS 

were compared using motion capture data in a warehouse 

and real-world environments. The results showed that 

OpenVINS, utilizing ZED2 stereo cameras, achieved su-

perior localization accuracy with a mean absolute position 

error (APE) of 0.17 m and a mean relative position error 

(RPE) of 0.02 m, outperforming ORB-SLAM3 in the same 

conditions. 

In conclusion, while the findings underscore the im-

portance of stereo-inertial estimation for robust localiza-

tion, particularly in differential robots, the limitations 

identified highlight the need for continued development 

and optimization of both hardware and algorithms to ad-

dress the challenges posed by dynamic and diverse envi-

ronments.  

By adopting this visual-inertial localization onto the 

robot, the localization performance improved the accuracy 

of the robot’s real-time position and accounted for the 

drifts that were coming from the wheels of the robot. It 

showed no tracking loss due to active feature tracking on 

RGB images from the camera even in low lighting condi-

tions. The result was very reliable for the robot to use the 

pose obtained from visual-inertial localization and to per-

form accurate motion planning and mapping as the next 

steps leading to autonomous navigation in industrial envi-

ronments.  

From the findings of this paper, the setup with ZED2 

camera in combination with OpenVINS showed optimal 

performance and is recommended to use further as a VIO 

system for localization on the robot. Due to its positional 

accuracy as seen from the results in Table 5.1 and ease of 

use with clear documentation, active community support, 

and easy implementation, OpenVINS has an edge over 

ORB-SLAM3. 

In the future, optimization of the absolute position er-

ror and relative position error of the localization algo-

rithms can be achieved by integrating external sensors 

such as IMU and encoders.  
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