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his paper introduces a novel approach to bench-
marking Indoor Localization Systems (ILS) for mo-

bile robots in warehouse and manufacturing contexts. 
The study focuses on diverse localization technologies 
commonly used in mobile robotics and implements trans-
parent and comparable performance metrics, an auto-
mated experimental procedure, as well as an intuitive 
performance visualization approach. Experiments were 
conducted using a custom-built robot equipped with var-
ious sensors, including LiDAR, Ultra-Wideband (UWB), 
and vision systems. A process for systematically analyzing 
the impact of environmental factors such as lighting, re-
flectivity, and obstacles on localization performance is 
proposed. The results provide insights into system robust-
ness and accuracy under different conditions. The study 
enables more efficient experimental analysis of sensor fu-
sion and optimization strategies for achieving optimal 
performance and offers a workflow to efficiently investi-
gate sensor fusion concepts using real data. 

[Keywords: Benchmarking, Localization, Robotics, Intralogis-
tics] 

n diesem Beitrag wird ein neuartiger Ansatz zum 
Benchmarking von Indoor-Lokalisierungssystemen 

(ILS) für mobile Roboter in Lager- und Produktionsum-
gebungen vorgestellt. Die Studie konzentriert sich auf 
verschiedene Lokalisierungstechnologien, die üblicher-
weise in der mobilen Robotik verwendet werden, und im-
plementiert transparente und vergleichbare Leistungs-
metriken, ein automatisiertes Experimentierverfahren 
und einen intuitiven Ansatz zur Leistungsvisualisierung. 
Die Experimente wurden mit einem speziell angefertigten 
Roboter durchgeführt, der mit verschiedenen Sensoren 
ausgestattet war, darunter LiDAR-, UWB- und Vision-
Systeme. Es wird eine Methode vorgeschlagen, um die 

Auswirkungen von Umgebungsfaktoren wie Beleuch-
tung, Reflektivität und Hindernisse auf die Lokalisie-
rungsleistung systematisch zu analysieren. Die Ergeb-
nisse geben Aufschluss über die Robustheit und 
Genauigkeit des Systems unter verschiedenen Bedingun-
gen. Die Studie ermöglicht eine effizientere experimen-
telle Analyse von Sensorfusions- und Optimierungsstra-
tegien, um eine optimale Leistung zu erzielen, und bietet 
einen Arbeitsablauf für die effiziente Untersuchung von 
Sensorfusionskonzepten anhand realer Daten.  

[Schlüsselwörter: Benchmarking, Lokalisierung, Robotik, Intra-
logistik] 

1 INTRODUCTION 

Mobile robots play a vital role in driving the ongoing 
transformation towards an interconnected, efficient, and 
flexible industry [1]. They serve as a key instrument for 
maintaining competitiveness in the face of rising customer 
demands, which are fueled by the growth of e-commerce, 
product individualization, and labor shortages [2]. The lat-
est version of the DHL Trend Radar, published in 2022, 
identifies indoor mobile robots as the technology trend with 
the highest potential to disrupt the logistics industry [3]. 
This potential is expected to materialize within the next five 
years, as the technology of Autonomous Mobile Robots 
(AMRs) continues to advance, enabling their widespread 
deployment on a large scale. Unlike Automated Guided 
Vehicles (AGVs), which are attributed to basic line-follow-
ing capabilities, AMRs possess advanced abilities regard-
ing decision-making and real-time path planning [3]. The 
potential applications of mobile robots, including both 
AMRs and AGVs, in logistics are manifold, ranging from 
simple material transport to more complex tasks such as 
mobile manipulation, packaging, or palletizing [4].  
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Localization is a key capability of mobile robots, ena-
bling them to navigate and operate effectively in complex 
environments [5]. The selection of a suitable Indoor Local-
ization System (ILS) is paramount when developing a mo-
bile robot to ensure its safe and reliable operation. As illus-
trated in Figure 1, for a localization system to be considered 
suitable, the system performance must satisfy the applica-
tion’s requirements [6]. A method for the derivation of lo-
cation data requirements has already been proposed in the 
literature [7].  Hence, the present work focuses on bench-
marking, which involves determining the performance of 
localization systems through empirical experiments. 
Hence, benchmarking serves as an indispensable tool, 
providing stakeholders with the necessary information to 
make informed decisions regarding system selection. 

Diverse sensor technologies, such as Light Detection 
and Ranging (LiDAR), Inertial Measurement Units 
(IMUs), vision, or Ultra-Wideband (UWB), are commonly 
employed for localizing mobile robots [3]. The heterogene-
ity of these localization technologies introduces a wide 
range of influencing factors, such as radio interference, dy-
namic environments, and lighting conditions, that can po-
tentially impact system performance [8]. Consequently, ob-
taining comparable and realistic benchmarking results for 
systems that are based on such diverse technologies poses 
a significant challenge [9]. This challenge is further ampli-
fied when the focus extends beyond a specific application 
or domain, encompassing a broader range of common in-
fluencing factors [10].  

Consequently, existing benchmarking studies tend to 
focus on the comparison of similar technologies or specific 
algorithms, such as for vision-based localization [11] or Li-
DAR-based Simultaneous Localization and Mapping 
(SLAM) algorithms [12]. While such technology-driven 
benchmarking approaches are undoubtedly essential for ad-
vancing technology, the requirements and limitations of the 
real world are often disregarded, limiting their practical 
utility for the selection of localization systems. 

This work presents a distinct approach by conducting 
application-driven benchmarking of commercially availa-
ble localization solutions based on various technologies 
commonly used for mobile robots in warehouse and manu-
facturing scenarios. The primary objective is to provide a 
performance approach, conducting structured and auto-
mated comparisons between different systems based on 
comparable performance metrics. These facilitate the se-
lection of the ideal localization system or technology for 
mobile robot applications. The key contributions of this 
work can be summarized as: 

a) Elaboration of a testbed for automated execution 
of experiments  

b) Intuitive data visualization for qualitative analy-
sis of ILS’ robustness 
 

c) Use case analysis for different ILS influencing 
factors  

The remaining paper is structured as follows. Sec-
tion 2 provides an overview of related work. Next, the ma-
terials and methods for the benchmarking study are intro-
duced in Section 3. Section 4 presents the results, which are 
subsequently discussed in Section 5. The paper closes by 
drawing conclusions and providing an outlook in Section 6.  

2 RELATED WORK  

This section provides an overview on the topic of 
benchmarking of localization systems leading to the iden-
tification of the research gap addressed in this work.  

As mentioned before, existing literature predomi-
nantly focuses on benchmarking studies that are centered 
around specific technologies. For example, Zuo et al. [13] 
conducted a comparative analysis of three widely used 
open-source SLAM algorithms for mobile robots using 
data from a LiDAR scanner, supplemented with IMU and 
odometry data. Besides position accuracy, the study evalu-
ated orientation accuracy, processing power, and memory 
usage. Similarly, Ragot et al. [14] as well as Kasar et al. 
[11] conducted technology-driven benchmarking studies, 
comparing visual SLAM algorithms using image se-
quences from different camera types. Despite their valuable 
contributions to the scientific community, they primarily 
represent technology-driven benchmarking and offer lim-
ited practical utility for logistics stakeholders when it 
comes to selecting a localization system or technology. 

However, other benchmarking studies place a stronger 
emphasis on the application aspects of mobile robotics. For 
example, Hofer et al. [15] evaluated four LiDAR scanners 
for mobile robot localization in the construction industry 
within three application-driven scenarios, using the same 
localization algorithm. Although the study does concen-
trate on a specific application domain, it maintains a pri-
mary focus on a component of a particular localization 
technology. Furthermore, although the study is insightful, 
repeatability and comparability across different scenarios 
and sensors could potentially be further enhanced by utiliz-
ing automated robot control [8].  

In contrast, Karaagac et al. [16] and Crețu-Sîrcu et 
al.  [17] conducted benchmarking of commercially availa-
ble systems, with a specific focus on their application in 
industrial environments. While Karaagac et al. examined a 
Bluetooth and a UWB-based system across four different 
scenarios, addressing various system vulnerabilities, Crețu-

Figure 1: Selecting a localization system for a robotic applica-
tion by matching system performance and requirements. 
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Sîrcu et al. compared a UWB-based system with an ultra-
sound-based system. These application-driven studies offer 
valuable insights into system performance within practical 
scenarios, contributing to market transparency by provid-
ing a deeper understanding of system capabilities. How-
ever, they are not centered on mobile robotics, but on in-
dustrial applications in general. 

In conclusion, existing benchmarking studies of local-
ization systems are predominantly focusing on certain tech-
nologies or even components. While some studies consider 
market-ready systems in industrial environments, they are 
not focused on the application of mobile robotics. Hence, 
there is a scarcity of application-driven benchmarking stud-
ies of localization systems specifically targeting the field of 
mobile robotics in warehouse and manufacturing scenarios. 
This work aims to address this research gap by implement-
ing an application-driven benchmarking approach for the 
performance analysis of localization solutions in ware-
house and manufacturing settings for mobile robots.  By 
conducting experiments that reflect real-world applications 
and considering market-ready solutions, the goal is to offer 
valuable insights for stakeholders in system and technology 
selection. 

3 MATERIAL AND METHODS  

The systematic experimental analysis is crucial for un-
derstanding the impact of the application environment and 
the ILS configuration on the localization performance of 
ILS. This section describes the fully automated test setup 
and how the setup reflects a real-world intralogistics appli-
cation and which ILS are implemented and tested. Next, the 
experiment process is presented, in which environmental 
disturbances are considered. Afterward, the automatic data 
collection pipeline is presented. Lastly, it is shown which 
ILS performance values are applied and why these are im-
portant for benchmarking ILS. The methodology for appli-
cation-driven benchmarking of indoor localization sys-
tems, as presented by Schyga et al. [18], serves as the 
methodological foundation. It guides designing significant 
scenarios, specifying and executing experiments, and eval-
uating the performance for benchmarking in test halls. 

3.1 TEST SETUP 

This subsection describes which scenario is regarded 
for the application-driven test setup and how the setup re-
flects some of the influencing factors on ILS.  

An application-driven scenario is defined by environ-
mental influences and process influences [18]. The appli-
cation scenario is a mobile robot inside a warehouse. This 
is a typical application and environment for mobile robots 
in the intralogistics domain, which is why this is chosen as 
a scenario. In the following the term scenario describes a 
set of environmental parameters, a set of process influ-
ences, and the configuration of the sensors and algorithms 

used for localization (cf. Figure 2). Process influences are 
the entity to be localized/tracked (ELT) itself, the motion, 
and the path. In our case, the ELT is a mobile robot that is 
used for typical logistical tasks, such as goods transporta-

tion, inventory management, or order picking. The robot 
operates with low speed (< 1 m/s), and low rotational 
speeds (< 90 deg/s) on a horizontal plane, driving through 
aisles of the warehouse or logistics area in straight lines and 
curves. There is no guidance using lines or markers. Since 
only one robot is used for the experiments, the process in-
fluences remain the same throughout the experimental se-
ries. Depending on the items that are stored inside the ware-
house, the environment of warehouses can differ in the 
light reflectivity of the surfaces and the impact on electro-
magnetic wave propagation due to different material con-
stants, such as the attenuation constant or reflection con-
stant. How electromagnetic waves propagate in the 
environment influences the performance of radio-based 
ILS such as UWB systems. Metals for example have a high 
reflection coefficient while water and human tissue have a 
high attenuation coefficient for waves in the UWB spec-
trum.  

Typical for a warehouse are shelves in which items are 
stored. In the shelf slots, there can be items of different 
sizes stored or not items stored. For map-based localiza-
tion, the static structures of the environment are relevant, 
which are the walls and the vertical beams of the shelves. 
Items that are stored inside the shelves should be removed 
before map creation or digitally removed during the clean-
up process for the map. Lighting has also been shown to 
influence vision-based ILS. Warehouses can have different 
lighting due to the number and size of windows, the 
weather, and the number and brightness of artificial light 
sources. Dynamic obstacles, such as humans and other ro-
bots, show up on the laser scans provided by LiDAR sen-
sors and also change the way electromagnetic waves prop-
agate in space. Some warehouses are fully automized and 
there are no humans present and in other warehouses, hu-
mans and mobile robots are acting in the same environment 
simultaneously.  

Figure 3 shows the test setup. The experiment area is 
in the center of the test setup with a geometrical size of 9 
m × 9 m.  To represent a typical structure of a shelf, the 
distance and dimensions of the vertical beams for a typical 
shelf were measured and cardboard boxes that roughly fit 

Figure 2: A scenario depends on the environmental parameters,
the system configuration and the process parameters.  



DOI: 10.2195/lj_proc_knitt_de_202310_01 
URN: urn:nbn:de:0009-14-58098 

  
© 2023 Logistics Journal: Proceedings – ISSN 2192-9084          Page 4 
Article is protected by German copyright law 

the dimensions of the vertical beams were stacked on top 
of each other and placed according to the distance meas-
ured of an actual shelf. Items that are stored on the shelves 
are represented by metal carts. Stored items with high light 
reflection constants, like metal sheets or glass panes are 
placed sporadically in the test environment. The robot 
moves within the experiment area through a series of eval-
uation points. Evaluation points are the points on which the 
localization performance is later evaluated. The evaluation 
of the ILS performance is done using an optical motion-
capturing system (MoCap) that consists of twelve cameras. 
These cameras are equipped with emitters that send out 
light in the infrared spectrum. The system can determine 
the pose of objects with millimeter accuracy by measuring 
the Time-of-Flight (TOF) to markers that get attached to 
the ELT. Additionally, the setup includes 4 UWB anchors. 
These anchors act as reference points and are responsible 
for transmitting UWB signals at precise intervals. 

As described earlier, different factors can influence the 
performance of ILS. Throughout the environmental series, 
some factors that have shown an impact on some types of 
visual- and radio-based ILS were changed. The varied pa-
rameters were: 

 Lighting: The lighting was varied by turning the 
ceiling lights on/off, opening/closing blinds for 
three large windows, and opening/closing the gate 
of the lab. The lighting is quantified by the illumi-

nance, which was roughly determined by measur-
ing the illuminance within the experiment area 
and tracking the maximum and minimum values. 
This choice of parameters represents warehouses 
with different lighting intensities. 

 Reflectivity: The reflectivity in the environment is 
varied by adding metal sheets for some of the ex-
periments. Reflective surfaces affect the laser 
scans that are measured with the LiDAR sensors. 
Reflective surfaces could be present in a ware-
house or production environment, e.g., by glass 
panes or sheet metal that are being produced or 
stored or are part of machinery or the building it-
self.  

 Dynamic human obstacles: Dynamic human ob-
stacles were added for some experiments by hav-
ing a person walk around the robot in circles while 
it was following its trajectory. This represents en-
vironments in which vehicles as well as humans 
operate. 

 Metal obstacles: Metal load carriers are added for 
some experiments to the experiment area. This 
represents warehouses in which metal objects are 
stored.   

The process influences (ELT, speed and acceleration 
settings, and the path) for this experimental series are the 
same for all experiments. The environmental influences 
that stay the same for all experiments are a room tempera-
ture between 20 °C and 23 °C, an atmospheric pressure of 
approx. 1013 hPa, relative humidity between 40% to 60 %, 
a low maximum distance to static structures (< 2 m), and a 
weak electromagnetic field (absolute magnetic flux density 
< 150 μT). These are typical values for many warehouses. 
Cold or dark warehouses or block storage areas are not rep-
resented by the experiments. Tropical climates, high-alti-
tude atmospheric pressure, or areas with machines that pro-
duce strong electromagnetic fields are also not represented 
by the experiments. Another influencing factor that is not 
considered in this experimental series is the cross-interfer-
ence of sensors by their light emitters which can occur 
when multiple entities in the same area are equipped with 
LiDAR sensors or depth cameras.  

3.2 SENSORS AND SYSTEMS  

An ILS consists of a set of sensors and an algorithm 
that processes the sensor data. In the following, the sensor 
technologies that were used in this study shall be briefly 
explained:  

 LiDAR: LiDAR sensors are advanced detection and 
ranging devices that utilize laser technology to meas-
ure distances and create detailed representations of 
their surrounding environments. These sensors emit 
laser pulses and calculate the time it takes for the 

Figure 3: Experimental set up 
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pulses to reflect off objects, enabling them to accu-
rately determine distances. In this study, three different 
LiDAR sensors are used: 

a. SICK microScan3  

b. Velodyne Puck 

c. SICK MRS1104 

 Tracking Camera: The underlying algorithm of the 
deployed Intel Realsense T265 is a feature-based vis-
ual SLAM algorithm. The T265 uses sensor fusion 
techniques to combine the visual odometry and IMU 
data. By integrating these two sources of information, 
the camera achieves more robust and accurate track-
ing, overcoming the limitations of using either visual 
or inertial data alone. 

 Ultra-Wideband:  The system, consisting of four an-
chor nodes and a localization tag, the SICK LOCU 
system, utilizes UWB technology to determine the 
distances between anchor nodes and the localization 
tag once the localization tag calculates its position 
based on the distance measurements, it transmits the 
position information to a central processing unit or a 
control system. The data that the system provides is 
the 2D position of the UWB-Tag. 

The chosen technologies represent a set of established, eas-
ily integratable solutions in the ILS market. The specific 
solutions are summarized in Table 1. To evaluate systems 
based on heterogeneous technologies, a custom-built mo-
bile robot was equipped with a UWB-Tag, three LiDAR 
sensors, a tracking camera, and markers for an optical mo-
tion-capturing system (cf. Figure 4). 

 Table 1: Overview of used sensors and sensor systems 

 

 

 All LiDAR sensors provide 3-dimensional point 
cloud data and 2-dimensional laser scan data. For this 
benchmarking study, the 2D-localization algorithm AMCL 
(Adaptive Monte Carlo Localization) is applied using laser 
scan data in combination with odometry data. Using the 
previously described sensors, four different ILS are com-
pared. Implemented are six different AMCL-based ILS and 
one UWB-based ILS. AMCL uses a 2D laser scan of the 
environment and matches it to a pre-recorded map with a 
relatively low update rate. Odometry data can be used to 
update the position data more frequently between scan-to-
map matches. The AMCL-based ILS differ in the source of 
the laser source. A tracking camera provides odometry 
data.  

 As a robotics framework, the Robot Operating Sys-
tem (ROS) was used. These systems were integrated into a 
testbed, enabling automated execution of experiments. The 
autonomous navigation of the robot was implemented us-
ing the move_base package. For obstacle avoidance, the la-
ser scans of all three LiDAR sensors were combined into 
one laser scan. The implemented test bed allows a fully au-
tomated and reproducible test procedure for the perfor-
mance analysis of the integrated ILS.  

 In the following, the benchmarking procedure is pre-
sented in a process-oriented manner. First, the definition of 
scenarios is presented. Next, the experiment specification 
is elaborated. After the presentation of the experiment exe-
cution, the performance evaluation will present how the ex-
periment data was analyzed. 

System Technology Data 

SICK microScan3 LiDAR 2D scan 

Velodyne Puck LiDAR 2D scan 

SICK MRS1104 LiDAR 2D scan 

Intel Realsense T265 Tracking-Camera odometry 

SICK LOCU Ultra-Wideband Position  

Figure 4: Sensor placement on our custom-built robot: a) SICK
microScan3, b) Velodyne Puck, c) SICK MRS1104, d) Intel
Realsense T265, e) Markers for Qualisys Motion Captur-
ing System, f) UWB-Tag for SICK LOCU 
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3.3 EXPERIMENTS 

Due to the large dimension of environmental influ-
ences and a large number of different systems and system 
configurations, it is required to conduct a large number of 
experiments to accurately reflect real-world relation to the 
performance of ILS. Automating the experiment procedure 
allows to create large data sets more efficiently. This sec-
tion explains the automated experiment procedure. As 
shown in Figure 5, the experiment phase is divided into 
three stages: the setup process, the online/live phase, and 
the offline experiment. 

Setup Process: Calibrating MoCap refers to the pro-
cess of setting up and aligning the motion capture system 
to accurately track the movements of the robot. The cali-
bration process ensures that the captured data is properly 
synchronized and accurately represents the real-world po-
sitions and orientations of tracked markers. Define trajec-
tory refers to the path that a robot follows during the exper-
iment. Additionally, the environment is changed scenario 

Online/Live Phase: The robot moves on a predefined 
trajectory, and all sensor readings are recorded by saving 
the raw sensor data into a rosbag. This creates a valuable 
dataset that can be later used for various purposes, such as 
algorithm development, testing, and machine learning. 
Measure Environmental Parameters involves collecting 

data in the experiment area and defining all the parameters 
that affect the localization system. Following a given tra-
jectory involves guiding robot movements along a prede-
termined path. Recording all sensor data in a rosbag: The 
data collected from all sensors on the robot during the exe-
cution of the trajectory is saved in a specific format 
(rosbag) that allows efficient storage and playback of data. 

Offline Experiment: This process involves adjusting 
all transformations based on the localization algorithm, re-
playing the recorded rosbag containing raw data, running 
multiple localization algorithms (Algorithm X), and saving 
the pose data for each algorithm along with the ground truth 
pose. Adjusting all transformations according to the locali-
zation algorithm: The robot's sensor data, such as camera 
images or laser scans, is processed through a localization 
algorithm. The localization algorithm estimates the robot's 
pose (position and orientation) relative to a global or local 
coordinate system, adjusting the transformations between 
sensor frames and the robot frame to align them with the 
chosen reference frame. 

With the recording of raw sensor data, it is possible to 
replay the data and reconfigure the localization algorithms 
while keeping the input to the algorithm the same. This in-
creases the reproducibility and the flexibility to benchmark 
sensor fusion approaches. 

3.4 PERFORMANCE EVALUATION & VISUALIZATION 

This subsection presents the evaluation of the pose 
data. All pose data for the different ILS is saved in a folder 
that corresponds to a specific experiment. A Python script 
checks which experiments were not evaluated and loops 
over the folders that were not evaluated yet. It loads the 
pose data from rosbags and loads the experiment configu-
ration from a YAML file, downsampling the ground truth 
trajectory such that it has the same length as the ILS that is 
currently being evaluated. For each timestamp, the hori-
zontal error and the orientation error are determined. For 
these error arrays the maximum, the mean, and the standard 
deviation is determined. Once the pose data for an ILS for 
a specific experiment is evaluated, the data is appended to 
a data frame object which is created using pandas - the Py-
thon data science library. Once the evaluation script has 
looped over all the experiments and the pose data within, 
the data frame is complete and the data frame is saved as a 
CSV file with the name results.csv. The data frame consists 
of 26 columns in which the following information is saved: 

 Experiment-ID: date-timestamp at experiment 
start 

 System Configuration: a short description of the 
ILS, scan source, odometry source, whether or not 
UWB-data is used 

Figure 5: Flow diagram of the data collection process 
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 Environmental parameters: a short description of 
the lighting situation, minimum and maximum il-
luminance values, Boolean values indicating 
whether or not dynamic obstacles, reflective sur-
faces, or metal carts were added to the experiment 
area for the respective experiment 

 Trajectories: Complete trajectories for all ILS un-
der test and the reference trajectory. The trajecto-
ries are defined by x, y, theta time series data 

 Temporal error propagation: orientation error 
time series, position error time series 

 Performance metrics: maximum position error, 
mean position error, standard deviation of posi-
tion error and orientation error, maximum orien-
tation error, mean orientation error.  

Saving this information in a data frame allows for eas-
ier filtering, which offers more insights, e.g., using visuali-
zation techniques. The visualization script mainly utilizes 
methods from the Python library matplotlib.  

4 EXPERIMENTAL RESULTS 

To demonstrate the potential of the experiment proce-
dure and the benefits of adequate visualization techniques 
and meaningful performance metrics, example data from a 
small experimental series is presented. For each scenario 
(cf. Figure 2) one experiment was conducted. To show ex-
emplary performance analysis of ILS in the logistics do-
main, a use case of data analysis in the following chapter. 
Since the focus lies on what information can be deducted 
from which type of plot and not on the analysis of the im-
pact of each environmental factor, one scenario is shown. 
Example pose data for the experiment is presented in vari-
ous ways. The plots that will be shown are merely an ex-
cerpt of the plots that are created within the visualization 
script. The complete visualization of the experiments is 
available on the corresponding GitLab project [19]. 

To increase the statistical significance of the results 
and to enable a meaningful analysis of the impact of the 
influencing factors, more experiments are to be conducted. 
Using the visualization evaluation script different plots are 
generated – 2D-trajectory plots, orientation-error-over-
time-plots, and radar charts that allow visualizing robust-
ness of an ILS towards different environmental influences.  

Figure 6 shows the 2D trajectories of all ILS for a cho-
sen example experiment. The robot’s initial position is in 
the top-middle of the experiment area and ends in the 
lower-left corner. The bottom-right corner shows the envi-
ronmental parameters of the experiment and the experi-
ment ID. In this example scenario, no obstacles are added 
to the experiment area, and the illuminance during the ex-
periment is between 600 to 1000 lux. For each system, the 

position error for different areas of the environment can be 

qualitatively estimated by the viewer. The qualitative tra-
jectory is then to be put into the context of the setup to iden-
tify the first implication of different environmental influ-
ences on the localization performance. 

In the given example the result shows that the UWB-
based ILS shows a smoother trajectory on the vertical sec-
tion on the left side of the experiment area, a rougher tra-
jectory on the right side of the experiment area, and the 
roughest curve between the shelves in the middle of the ex-
periment area. This is possibly due to the lower distance 
towards the closest UWB anchor and due to the obstacles 
left and right of the middle vertical section of the trajectory. 
When planning the layout of the UWB anchors, the dis-
tance the maximum distance to the ELTs should be consid-
ered to achieve the desired performance. To investigate 
spatial dependencies on the localization performance of 
ILS in future experiments, live-tracking of the distances to 
the anchors should be implemented.   

While the UWB-based localization seems to be influ-
enced by the distances to the anchors, the position error of 
the AMCL-based localization systems is also dependent on 
the location within the experiment area.  This can be seen 
by the larger distances of the ILS trajectories to the Truth 
trajectory on the bottom left part of the experiment area and 
the top horizontal section of the trajectory. These areas cor-
respond to the areas with the highest illuminance values 
due to the proximity of the windows and the hangar gate 
(cf. Figure 2). The trajectory corresponding to the UWB-
based ILS is less smooth than the trajectories that corre-
spond to the AMCL-based ILS under certain environmen-
tal conditions. 

Besides the position of the robot, determining the ori-
entation of the robot is important for navigation and con-
trol. If there is an error in the robot’s understanding of its 
orientation, it might misinterpret its position within a ware-
house or the direction it needs to take. Analyzing the orien-
tation error over time can help in noticing dependencies of 

Figure 6: 2D-Trajectories show spatial influences on the po-
sition error.  
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dynamic environmental changes. Depending on the appli-
cation and the accuracy it requires, the orientation error of 
the robot is required to remain within a certain range. 
Therefore, analyzing this error can help find the right set of 
sensors for mobile platforms. Figure 7 shows the orienta-

tion error of the ILS over time for a scenario with high il-
luminance. This example is chosen to demonstrate its po-
tential regarding the intuitive understanding of the 
connection between environmental changes on the perfor-
mance metrics of ILS. In the first 150 seconds of the exper-
iment, the absolute value of the orientation error remains 
below 20 degrees for all systems. In the last 30 seconds of 
the experiment, the orientation error of all ILS shows large 
error spikes of up to 100 degrees. Toward the end of the 
trajectory, the robot approaches the hangar gate. In this spe-
cific experiment, the sun was shining directly through the 
windows of the hangar-gate which resulted in a relatively 
extreme lighting scenario for indoor applications. This 
most likely caused the large orientation error spikes. This 
type of plot becomes more valuable as environmental pa-
rameters such as the illuminance are tracked and saved over 
time opposed to noting the minimum and maximum values. 
By plotting the time series describing environmental pa-
rameters underneath the influences can be intuitively visu-
alized. This feature will be implemented in the future.  

Radar charts are a type of data visualization that can 
be visually appealing and informative for certain types of 
data. They are particularly useful for displaying multivari-
ate data, where each variable is represented as a spoke em-
anating from a central point, forming a polygonal shape. A 
spoke refers to one of the straight lines that radiate outward 
from the center of the chart to the outer edge. Each spoke 
represents a different variable or dimension of data being 
plotted. The primary reason radar charts are visually inter-
esting is due to their unique ability to convey patterns and 
relationships within multiple dimensions of data simultane-
ously. This feature allows us to study the impact of individ-
ual environmental parameters on any performance metric 
of ILS. Figure 8 shows an exemplary radar chart that shows 
the robustness of the ILS towards specific environmental 
influences. The robustness is shown by the magnitude of 
performance values such as the mean horizontal error or the 

maximum horizontal error. The horizontal error is a key 
performance metric as it directly impacts the size uncer-
tainty space in which the ELT could be located. Depending 

Figure 7: Orientation error time series  

Figure 8: Radar charts are able to convey patterns and relation-
ships within multiple dimensions of data simultaneously  
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on the use case the maximum or mean value of a perfor-
mance value is considered. For safety-critical use cases typ-
ically the maximum error is considered while for other use 
cases, the mean horizontal often in combination with the 
standard deviation is sufficient. The horizontal error for 
each ILS for each scenario category is plotted within one 
radar chart. The distance to the center of the radar chart in-
dicates the magnitude of the performance value for the cor-
responding environmental influence.  

In the case of the mean and maximum values for the 
horizontal error, a large radar chart of an ILS indicates a 
poor general performance of the ILS. A peak in the radar 
chart can indicate a dependency on an environmental influ-
ence. The UWB-based ILS shows even magnitudes for the 
different environmental influences for the mean horizontal 
error but the maximum horizontal error peaks when the en-
vironment has metal carts or low illuminance. The radar 
chart shows a larger maximum horizontal error for the 
UWB-based ILS when the illuminance is low. There 
should not be an influence of illuminance on the perfor-
mance of UWB-based localization. This effect would most 
likely not be observed if more experiments were con-
ducted. The radar chart corresponding to the mean horizon-
tal error supports that. The result that the mean horizontal 
error is the highest for two of the AMCL-based ILS when 
the illuminance is low is counter-intuitive as well. This re-
sult is not due to the lighting but seems to be due to the 
repetition of similar patterns within the recorded map as 
can be seen by the trajectory shift of map-based ILS in Fig-
ure 9. The AMCL-based ILS compares a live laser scan 

with a pre-recorded 2D map of the environment. This map 
includes the pillars of the logistics shelves. Since the pillars 
of the shelves form a pattern that is reoccurring within the 
map (cf. Figure 3), there can be instances where map-based 
ILS mistakenly calculates to be in a different row or aisle. 
Including reflective markers that act as reference points or 
a sensor fusion with the UWB-based ILS could alleviate 
the issue. Avoiding patterns in building structures would 
put additional requirements on the design of the warehouse 
and would be impractical. The occurrence of the trajectory 

shift appears to be random which results in a limited inter-
pretability of the radar chart for small experimental series 
like the one in this study. 

In summary, the utilization of different types of plots 
can greatly aid in the analysis of ILS performance for mo-
bile robotics. Trajectory plots, for instance, offer valuable 
insights into the performance of various ILS in different 
spatial points. By revealing the strengths and weaknesses 
of ILS like UWB and vision-based systems concerning fac-
tors like distance and lighting conditions, these plots enable 
a comprehensive understanding of their spatial effective-
ness. On a similar note, time series plots come into play 
when analyzing the effect of dynamic environmental 
changes. Additionally, the radar chart serves as a valuable 
tool for assessing overall system performance. By allowing 
for a comparison of diverse influences, this plot type aids 
in identifying the most crucial factors that impact a given 
application's success. In essence, the strategic utilization of 
these plot types offers an enhanced understanding of the 
intricate relationships and dependencies of ILS perfor-
mance and the environment. 

5 DISCUSSION  

The results show that the performance analysis of ILS 
can vary significantly under the impact of different envi-
ronmental influences. Therefore, benchmarking needs to be 
performed to find the best-suited ILS for a specific appli-
cation and its surrounding environment.  

Potentials 

The integration of radar charts introduces an element 
of intuitive comprehension in assessing the robustness of 
ILS. This innovation augments the transparency of perfor-
mance metrics provided by system manufacturers and al-
gorithm developers. These charts offer a clearer under-
standing of ILS performance, aiding in more informed 
decision-making.  

The capability to simultaneously capture raw data and 
subsequently replay it opens avenues for the fusion of sen-
sors in algorithms like AMCL. This facet increases flexi-
bility during the exploration of novel algorithms and con-
figurations, further enhancing the adaptability of ILS. 
Many algorithms require the same raw data such as laser 
scan data or odometry data. Likewise, different sensors are 
available to provide the same data. The offline execution of 
the localization algorithms enables the extensive configu-
ration and combination of the raw data and the algorithms. 
Additionally, the simultaneous capture of the sensor data 
fosters the comparability of the localization data of the ILS 
under test.  

Due to the large number of possible technologies, sen-
sor models, and combinations of different sensors via sen-
sor fusion, it becomes difficult to analyze a data set of that 

Figure 9: Shifted trajectories of map-based ILS due to repetitive
patterns within the pre-recorded map 
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set for any combination of environmental and process pa-
rameters. A recommender system would be highly benefi-
cial for system developers as it increases transparency of 
the system performance for a given scenario allowing the 
system developer to make more calculated decisions. Per-
forming a large number of experiments efficiently by lev-
eraging the automation of the experiments allows to create 
a large data set that maps environmental influences and sys-
tem configurations to ILS performance values. A data set 
like this can be used to train Machine Learning (ML) algo-
rithms resulting in a model that can recommend an ILS and 
its configuration depending on parameters that describe the 
application environment and the process parameters. Such 
a model would simultaneously be able to predict the per-
formance values of the ILS. A challenge to this goal would 
be the large number of data points needed to train ML mod-
els. Currently, the length of a data set l created by an exper-
imental series consisting of next experiments and nILS dif-
ferent ILS is determined by 𝑙 ൌ 𝑛௫𝑛ூௌ. This is because 
the environmental and process parameters are only meas-
ured once. By measuring the environmental and process 
parameters with a sample rate fs the length of a data set is 
substantially increased for the same number of experiments 
and the same number of ILS under test. The length of the 

data set in that case would be determined by 𝑙 ൌ
ೣಽೄ௧

ೞ
 

where t denotes the duration of the experiments. This 
would also improve the quality of the data since the envi-
ronmental and process parameters can be dynamic and 
multiple measurements can more accurately capture the 
current environmental and process influences that are ap-
plied in a specific moment.  

Limitations 

It is difficult to attribute the impact on ILS to specific 
environmental influences due to the limited statistical sig-
nificance of the experiments. This limitation calls for a cau-
tious interpretation of the results and emphasizes the need 
for a larger number of experiments. For UWB-based ILS, 
additional sensors are imperative to add orientation data, a 
critical component for typical robotic tasks such as naviga-
tion. Certain environmental factors, such as vast open 
spaces within logistics environments cannot be investi-
gated in the current research facility due to a lack of space. 
The simultaneous collection of raw data is hampered by the 
physical limitations of sensor placement on the robot. Ide-
ally, each sensor of the same type is placed in the same 
mounting point on the robot. To overcome this challenge, 
future experiments should be conducted multiple times 
while exchanging the sensors' placement on the robot. The 
results show that continuously measuring environmental 
parameters could increase the interpretability of the results.  

Critical Reflection 

State-of-the-art ILS performance is yet to be achieved, 
due to the absence of comprehensive sensor fusion tech-
niques and little tuning of the used algorithms. This finding 

prompts further exploration of sensor fusion strategies and 
the enhancement of ILS parameters for future experiments. 
Benchmarking ILS proves to be a formidable undertaking, 
largely due to the time-intensive nature of conducting a suf-
ficient number of experiments to attain statistically mean-
ingful results. This inherent challenge underscores the need 
for efficient and pragmatic experimental designs in future 
benchmarking endeavors. The complex nature of capturing 
the multidimensional aspects of both the environment and 
system configuration remains an unresolved issue. Over-
coming this challenge necessitates innovative approaches 
to capture the intricate interplay between these variables. 
Cost considerations emerge as a significant factor in the 
practical application of ILS. The study's focal point on data 
collection processes and visualization techniques under-
scores the commitment to enhancing reproducibility and 
transparency in benchmarking results. These efforts facili-
tate more informed comparisons and assessments within 
the robotics community. It's important to note that the 
study's scope was limited to analyzing absolute localiza-
tion, while robotic systems encompass a broader range of 
capabilities. As the study indicates, relative localization 
through distance sensors and object detection via cameras 
are among the additional capabilities that warrant explora-
tion in future investigations. 

6 CONCLUSIONS & OUTLOOK 

This work introduces a novel approach to benchmark-
ing indoor localization systems for mobile robots in ware-
house and manufacturing scenarios. By conducting appli-
cation-driven experiments, this study contributes to 
enhancing transparency and aiding stakeholders in making 
informed decisions regarding the selection of ideal locali-
zation systems or technologies. 

The potential and limitations of various commercially 
available systems based on diverse technologies have been 
systematically explored and evaluated. The presented ex-
perimental results highlight key insights into the perfor-
mance of different localization systems under varying en-
vironmental conditions. Notably, the study sheds light on 
the impact of environmental factors, such as lighting and 
distance to UWB anchors, on system performance. The in-
novative use of radar charts enhances the visualization of 
system robustness, facilitating a clearer understanding of 
how different systems respond to distinct environmental in-
fluences. Furthermore, it is demonstrated that spatial and 
temporal insights can be fostered by adequate data visuali-
zation techniques. The multitude of technologies and sen-
sor combinations make analyzing data for different envi-
ronmental and process scenarios challenging. A 
recommender system would aid developers by clarifying 
system performance and informing decisions. Automating 
experiments to gather extensive data on how environmental 
factors and system setups affect performance can help train 
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Machine Learning models. The main challenge is collect-
ing enough data for effective model training. By continu-
ously measuring parameters, the dataset can be enriched, 
leading to better insights into dynamic influences.   

While the study presents valuable findings, certain 
limitations are acknowledged. The statistical significance 
of the experiments remains constrained, urging a cautious 
interpretation of results. The study also underscores the im-
portance of sensor fusion strategies and optimization time 
frames to achieve optimal performance.  

In reflection, this research paves the way for future in-
vestigations in sensor fusion techniques, efficient experi-
mental designs, and advanced localization capabilities be-
yond absolute positioning. The commitment to 
transparency, data collection, and visualization techniques 
contributes to the reproducibility and comparability of 
benchmarking results within the robotics community. This 
allows robotics developers to make more justified deci-
sions when selecting an ILS for an application. As the field 
of mobile robotics continues to evolve, the insights gained 
from this study will serve as a valuable resource for re-
searchers, practitioners, and stakeholders seeking to navi-
gate the complex landscape of Indoor Localization Sys-
tems. 
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