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verhead hoist Transport systems are used to 
transport wafers in 300 mm semiconductor facto-

ries. These rail-based systems usually consist of hundreds 
of vehicles to ensure fast and safe transport of wafers be-
tween tools. Faults of individual vehicles can cause dam-
age to the transferred goods and production downtimes. 
To minimize the risk of failure, extensive preventive 
maintenance of the vehicle's heavily stressed components 
is required. This includes the chassis and drive wheels. 
This article describes an automatic inspection approach 
that can drastically accelerate the inspection process of 
drive wheels. From the data obtained, we trained a deep 
convolutional autoencoder network to predict the growth 
of fractures on the surface of the wheels, which in the end 
allows us to carry out condition-based predictive mainte-
nance of the vehicles. This approach promises cost sav-
ings compared to routine- or time-based strategies for 
preventive maintenance, as we can carry out maintenance 
tasks only when they are justified. 

[Keywords: faults detection, wear out model, OHT, AMHS, con-
dition monitoring, autoencoder] 

verhead Hoist Transportsysteme werden zum 
Transport von Wafern in 300-mm-Halbleiterfabri-

ken eingesetzt. Diese schienenbasierten Systeme bestehen 
in der Regel aus Hunderten von Fahrzeugen, um einen 
schnellen und sicheren Transport der Wafer zwischen 
den Bearbeitungsmaschinen zu gewährleisten. Fehler ein-
zelner Fahrzeuge können zu Schäden am Transportgut 
und/oder gar Produktionsausfällen führen. Um das Aus-
fallrisiko zu minimieren, ist bis dato eine umfassende vor-
beugende Wartung stark beanspruchter Fahrzeugkom-
ponenten erforderlich. In diesem Zusammenhang wurde 
ein automatischer Inspektionsansatz für die Antriebsrä-
der der Fahrzeuge entwickelt, womit der Inspektionspro-
zess deutlich beschleunigt werden kann. Aus den Inspek-
tions-/Messdaten konnte ein deep convolutional-
Autoencoder-Netzwerk trainiert werden, welches das 
Wachstum von Frakturen auf der Oberfläche der Räder 

vorhersagt. Der Inspektionsansatz erlaubt eine zustands-
basierte prädiktive Wartung der Fahrzeuge. Damit sind 
Kosteneinsparungen gegenüber routinemäßigen oder 
zeitbasierten Strategien zur präventiven Wartung zu re-
alisieren, da Wartungsaufgaben nur bei tatsächlicher 
Notwendigkeit vorgenommen werden. 

[Schlüsselwörter: Fehlererkennung, Verschleißmodell, OHT, 
AHMS, Zustandsüberwachung, autoencoder] 

1 INTRODUCTION  

Overhead hoist Transport (OHT) systems are used to 
transport wafers in 300 mm semiconductor factories (fabs). 
These rail-based systems usually consist of hundreds of ve-
hicles to ensure fast and safe transport between the single 
manufacturing tools [AHS06; HSS16]. 

The components of the OHT vehicle are heavily 
stressed because of the 24/7 operation of semiconductor 
factories. Over time, they wear out and can cause damage 
to the vehicle itself, its rail, and transported goods and 
hence contribute to loss of production. In order to minimize 
the probability of system failure, specialists manually carry 
out extensive preventive maintenance of the vehicles on 
fixed time period basis (usually annually, [SZZ18]). This 
process includes removing the vehicle from the rail, man-
ual inspection of vehicle components and replacement of 
the potentially worn-out parts. Easy to understand, this ap-
proach is quite costly in terms of e.g. personnel efforts, 
spare parts procurement, and vehicle downtimes. Another 
challenge is that the quality of inspection and thus the ap-
propriate assessment of the vehicle’s components heavily 
depend on the expertise and competences of the respective 
maintenance staff. For example, there is no clear standard 
describing the grade of wear for drive wheels, which even-
tually can lead to different decisions of the single techni-
cians on the issue of replacement. In order to automate and 
standardize the inspection tasks and thus to ensure a high 
maintenance quality level, we propose the application of an 
automated inspection station. 

O 

O 
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The wear and tear process of the drive wheel happens 
gradually over time. With data collected from multiple 
measurements on multiple vehicles, we trained a deep con-
volutional autoencoder to predict how the fractures on the 
driving wheel develops in time.  

This paper is structured as followed: Section 2 intro-
duces the objective and describes an (automatic) inspection 
station. In section 3 we present a autoenocder model to pre-
dict the development of fractures on drive wheel surfaces.  
Finally, Section 4 concludes and gives an outlook. 

2 APPROACH 

2.1 SUBJECTS OF INSPECTION 

Depending on the manufacture, OHT vehicles have 
different wheels. For our experiments, we applied a Murata 
SCR 350 vehicle equipped with drive wheels, guide 
wheels, steering wheels, and support wheels, as shown in 
Figure 1. A test environment was brought up and the cor-
responding data for the evaluation was collected in a 
300 mm fab of a partner.  

 

The long-term goal of our research is to inspect all the 
mentioned components automatically. For this paper, we 
will focus on measurements and analysis of the driving 
wheel although the subsequently presented approach is 
supposed to be applicable for the other mentioned wheels 
(and OHT-manufactures), too. 

During operation, the radius of the drive wheel de-
creases and the surface fissures. A worn-out drive wheel 
can result in nonsufficient traction and inaccurate position-
ing of the vehicle in its rails. A worn-out wheel also re-
leases more particles than wheel in proper condition, which 
is quite problematic in clean room areas. To prevent such 
issues, the condition of the drive wheel should be inspected 
and evaluated thoroughly.  

2.2 THE INSPECTION STATION 

In order to capture the condition of the drive wheel, we 
developed an inspection station. We used the term “sta-
tion”, because the measurements are done not directly on 
the “productive” OHT path but on a rail next to it. The ac-
tual measuring unit is assembled on a part of straight rail. 
An opening allows optic sensors to inspect the drive wheel. 
To do so, we mounted a laser profile sensor on the rail to 
obtain the 3D model of a drive wheel’s surface. Figure 2 
shows how the laser sensor scans the drive wheel. The 
scanning procedure can be described as followed: While 
the roller device is locked, the vehicle enters the mainte-
nance station and stops with the drive wheel directly under-
neath the sensor’s laser axis. Afterwards the roller device 
is unlocked which allows the drive wheel to rotate and the 
laser sensor positioned above is able to capture the profile 
data of the wheel’s surface. By recording a series of pro-
files, from the laser profile sensor’s data a 3D scan of the 
wheel’s surface is obtainable. 

 

Figure 3 shows three examples of drive wheel’s sur-
faces with different wear-out grades. The scans were cap-
tured with the inspection station described before.  

The top photo and image a) show a relatively new 
wheel with slight abrasions on both sides of the wheel. The 
photo and image b) show a wheel in the middle of its pre-
dicted life cycle; we can see micro fractures on the edge of 
the wheel. The last photo and image c) show the surface of 
a wheel right at the end of its life cycle. We can see frac-
tures in the center of the wheel surface. The performance 
of the wheel will decline if not replaced. 

OHT vehicle 

drive wheel 

laser profile sensor 

roller device 

rail 
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3 ANALYSIS METHODS AND RESULTS 

3.1 ABRASIVE MODELING OF RUBBER WHEELS 

Not explicitly mentioned so far, this paper focuses on 
rubber wheels. In this context, the abrasive wear process of 
rubber were studied since decades, both experimentally and 
theoretically [GeP83; StD88; Sch58; IUS05; MuR92]. Ex-
perimental studies on the friction and wear of rubber 
wheels were also carried out [IUS05]. In various studies, 
the weights and diameter of the rubber probe is used to in-
dicate the degree of wear [GeP83; StD88; Sch58; MuR92]. 
Even though this leads to a confident assessment, weight 
and diameter are difficult to measure if the drive wheel is 
supposed to remain mounted on the vehicle. However, the 
fractures vertical to the direction of travel on the wheel sur-
face are also valid markers for the condition of the wheel 
surface  [IUS05; MuR92]. So for our study we used these 
vertical fractures as an indicator of wear-out degree and try 
to predict their progress/growth. 

From our experiments we learned that the 3D model 
derived from the laser profile sensor’s data has excellent 
quality in terms of resolution and accuracy; usually down 
into the sub micrometer range. Therefore, we are even able 
to observe subtle changes on the wheel’s surface between 
two subsequent measurements. It allows us to identify sin-
gle wheels in itself and even their singular fractures over 
multiple measurements 

3.2 CONVOLUTIONAL AUTOENCODER MODEL FOR 
PREDICTION 

In the past decades, machine learning algorithms and 
techniques have been of great interest in research and de-
veloped and widely used to perform data analysis on large 
datasets [LBD89]. For instance, the datasets commonly 
used to train image recognition algorithms contains mil-
lions of images. In case of supervised learning, annotated 
data is required, and the performance of the model depends 
heavily on the quality of the dataset used. However, anno-
tated data is not always available due to the nature of the 
raw data and/or the costly/time consuming labeling pro-
cess.  

In our case, the growth of fractures is not intuitive to 
human eyes recognition, thus makes manual annotation im-
possible. In order to exploit the unlabeled surface 
scan/3D models described in section II.B, we propose us-
ing a convolutional deep autoencoder model to firstly ex-
tract the characteristics of the fractures on wheel’s surfaces 
and secondly make a prediction on fractures’ development. 
We pursuit this approach, because this hybrid model has 
been proven to be effective on feature extractions on unin-
tuitive image datasets like CT scans  [CSZ17] and radar-
based signals [SÖG18].   

An autoencoder [SMS15] is a neural network that 
learns to describe the input with a low dimension represen-
tation and reconstruct the input from that representation. As 
shown in Figure 4, an autoencoder is constructed by two 
main parts: an encoder that maps the input into a lower di-
mensional representation, known as “code”, and a decoder 
that maps the code to a reconstruction of the original input. 

 

However, the autoencoder can also be used to generate 
or reconstruct images [SÖG18], and for motion prediction 
[WDG16]. In our case, aiming to predict the progress of 
fractures on wheels, their 3D scans serve as the input of the 
autoencoder, and the difference between subsequent meas-
urements as the output of the autoencoder. In detail, the 
scanned 3D surface model of a wheel is comparable to a 
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grayscale image, difference being that each pixel is repre-
sented by a 32-bit real number instead of an 8-bit integer. 
Because of this similarity, we decided to use convolutional 
layers for both, the encoder and the decoder, which is 
proven to be more effective than applying “simple” ANN 
(artificial neuro-network) for image processing [ZeF14]. 
The convolutional layer is the core building block of a con-
volutional neuro network [CNN]. Each of the convolu-
tional layer consist of a set of learnable filters—each has a 
small receptive field. During the learning process, each of 
these filters is convolved across width and height of the in-
put image, computing the dot product between the filter and 
a part of the input, generating a 2-demensional activation 
map of that filter. By calculating the overall cost function, 
we can determine the performance of the respective set of 
filters in terms of detecting the desired type of feature. By 
backpropagation, the parameters of the filters are updated 
accordingly. This process will be repeated until the perfor-
mance of the CNN reaches expectations/defined thresh-
olds.  

 Figure 5 shows the structure of our convolutional au-
toencoder network. There are three convolutional layers in 
the encoder and decoder part, respectively. The encoder 
tries to extract the features of the input 3D model, which 
are important for prediction, whereas the decoder tries to 
generate a feasible prediction based on these features. 

 

Figure 5. Structure of proposed convolutional autoencoder 

3.3 DATA-PREPARATION AND TRAINING OF THE 
CONVOLUTIONAL AUTOENCODER 

To obtain a sufficient amount of data to test/validate 
our model, we captured the state of driving wheels of 14 
OHT vehicles for 10 times over a time span of 9 months 
each. Data were collected during live operation from one 
of our partners’ 300 mm-wafer fab. According to well-ex-
perienced technicians in charge, in real world the lifespan 
of a driving wheel is usually about 12 to 18 months.  

For our test design, in cooperation with the mentioned 
technician, we selected vehicles with different wear-out 
conditions to make sure our datasets represent the entire 
lifespan of driving wheels. Apparat from that, the corre-
sponding OHT vehicles were selected randomly and did 

not get any special treatment/attention at all. We also per-
formed the data gathering processes with extra precaution 
to avoid errors, outliers and inconsistencies. Eventually, the 
dataset used to train the autoencoder consist of 24 000 data 
pairs (characteristics of a data pair: see next paragraph), ex-
tracted from 10 measurements of 12 wheels. The verifica-
tion set consist of 4000 data pairs from 10 measurements 
of the remaining 2 wheels.  

For the data preparation process, we first performed an 
overall pattern matching on the sample data, so that every 
fracture can be tracked through multiple measurements 
over time. Each data pair consists of a 3D model of a po-
tentially fractured area form a measurement as the input of 
the autoencoder and a 3D model of the difference between 
the original and the sequential measurement of the same 
area. We used the difference between two measurements 
instead of a second measurement as our observations and 
findings revealed that the development of fractures is not 
significant between two sequential measurements. In other 
words, it became obvious that if we use the second meas-
urement as the output of the autoencoder, our autoencoder 
will be more focused on reconstructing the surface model 
than predicting its changes (as intended). In this context 
and exemplarily, Figure 6 shows two sequential measure-
ments in a) and b) of a fracture and their grey scale differ-
ence in c). To make the difference more visible, we have 
magnified it by a factor of 5. 

 

Figure 6. Training data: a) surface of a fracture from meas-
urement 1; b) surface of the same fracture from a 
subsequent measurement 2 (one month later); c) 
difference between the two measurements 

For the obligatory training process of the hybrid 
model, we used the tensorflow and keras library as they are 
the most commonly used model-training platforms. We ap-
plied batch normalization to accelerate the training  [IoS15] 
and “adadelta”  [Zei12] as the optimizer. We trained the 
autoencoder for 800 epochs, where the cost function flat-
tened after approximately 650 epochs. We selected these 

Convolutional layer

Down-sampling layer

Up-sampling layer

Low dementional representation



DOI: 10.2195/lj_Proc_zhu_en_202112_01  
URN: urn:nbn:de:0009-14-54509 

 

  
© 2021 Logistics Journal: Proceedings – ISSN 2192-9084          Seite 5 
Article is protected by German copyright law 

hyperparameters based on results of multiple experiments’ 
results [BBK15]. 

3.4 USE CASE: RESULTS AND EVALUATION 

Following result assessment is performed on a quali-
tative basis because, unfortunately, a universally defined 
standard on evaluation of surface fractures is missing.  

Table 1 shows three representative examples from the 
verification data set consisting of 4000 data pairs, including 
a first measurement as input, the difference when measured 
a second time a month later, and the predicted difference 
calculated by our convolutional autoencoder each. 

Table 1. Examples from the verification dataset: Difference cal-
culated on the basis of two consecutive measurements and 
difference predicted by autoencoder. 

 example 1 example 2 example 3 

input     

difference ob-
served from 

measurements 

   

 difference 
predicted by 
autoencoder 

   

 

In Table 1, in the input line, the white area is where the 
fracture is. In the lines showing the difference observed 
from measurements and their predicted counterparts, white 
means further/additional wear out.  

Figure 7 gives a more detailed impression, how the 
characteristics (in our case the development of fractures) 
are successfully predicted by our autoencoder model. We 
can see that the convolutional autoencoder can predict the 
area in which the fracture is more likely to develop. Never-
theless, we must also admit that our prediction lacks details. 
There are meanly two reasons for this: First, so far we 
strongly assume that the development of fractures is not a 
deterministic process, whereas the autoencoder can only 
predict the possibility of further fracture development of an 
area. The second reason is that during the coding process 
some information on the details (inherently) go lost. This is 
why autoencoders are used as noise filters—as described in 
chapter 3.2 and  [SMS15]. One way to improve the perfor-
mance on details of the prediction might be to train a gen-
erative adversarial network (GAN, see [GPM14]). In the-
ory, a GAN network can generate a possible prediction 
with more details, but may need more training data and 
computing resources. In this case, we could use the convo-

lutional autoencoder as the so-called commentator (sup-
portive model) in the training process of a GAN network. 
We will determine the feasibility of the GAN network in a 
feature research. 

With the forecast generated by the autoencoder, we 
can predict the growth of fractures on driving wheels—
more precisely, the fractures expected one month in ad-
vance. So, if the prediction of a wheel’s surface meets the 
criteria for replacement, maintenance of the vehicle should 
be scheduled in the short term. In this way, we can now 
plan the maintenance work based on the condition of the 
driving wheel, which might be far more efficient than pre-
ventive actions.   

 

Figure 7. A detailed presentation of an example: a)input; 
b)difference; c)prediction of  difference 

4 CONCLUSION 

In this article, we introduced and applied an automatic 
inspection station for OHT vehicles, especially for their 
drive wheels. We deployed the inspection station in a 
300 mm-semiconductor-fab and conducted measurements 
of multiple vehicles in live operation. From the obtained 
data and its 3D models of the wheels, we trained a deep 
convolutional autoencoder network in order to forecast the 
growth of fractures on the wheels’ surface. So far, the re-
sults are quite promising, as we, firstly, proved that the con-
ditions of the wheel surface can be captured by the auto-
matic inspection station and its installed laser profile 
sensors. Secondly, an autoencoder model can be used to 
predict the development of fractures—nevertheless, we 
pursue to gather more scans to further quantitatively and 
statistically validate the result of the prediction model.  
From practitioner point of view, with the help of the inspec-
tion station and the prediction model, it is possible to estab-
lish condition-based preventative maintenance of OHT ve-
hicles, which is more efficient than preventive or reactive 
maintenance. 
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