
DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Page 1
Article is protected by German copyright law

Using Deep Neural Networks to Measure Buffer Levels in
Real-time with Edge-Computing

Verwendung von tiefen neuronalen Netzen zur Messung von Pufferpegeln in
Echtzeit mit Edge-Computing

Matthias Elia Klos
Paolo Pagani

Institute for Materials Handling and Logistics (IFL)
Karlsruhe Institute of Technology (KIT)

bstract: Technological advances and increasing
data traffic in the IoT environment lead to the relo-

cation of sophisticated data processing to the edge of net-
works. At the same time, powerful object detection ap-
proaches based on deep neural networks have been
developed in recent years. In this paper, an intelligent
camera based on deep learning algorithms and consisting
of low-cost hardware with limited computational and
storage capacity is presented. The developed object detec-
tion solution enables real-time monitoring of the inven-
tory of filled and empty small load carriers in a buffer
zone.

[Keywords: Computer Vision, Object Detection, Deep Learning,
YOLO, Raspberry Pi, NVIDIA Jetson Nano, Single-Board Com-
puter]

urzbeschreibung: Der technologische Fortschritt
und zunehmende Datenströme im IoT-Umfeld füh-

ren dazu, dass anspruchsvolle Datenverarbeitungspro-
zesse an den Rand von Netzwerken verlagert werden.
Gleichzeitig wurden in den letzten Jahren leistungsfähige
Objekterkennungsansätze entwickelt, die auf tiefen neu-
ronalen Netzen basieren. Im Rahmen dieser Arbeit wird
eine intelligente Kamera vorgestellt, welche auf Deep-
Learning-Algorithmen basiert und aus kostengünstiger
Hardware mit beschränkter Rechen- und Speicherkapa-
zität besteht. Die entwickelte Objekterkennungslösung
ermöglicht die Überwachung des Bestands von gefüllten
und leeren Kleinladungsträgern in einer Pufferzone in
Echtzeit.

[Schlüsselwörter: Computer Vision, Objekterkennung, Deep
Learning, YOLO, Raspberry Pi, NVIDIA Jetson Nano, Einplati-
nencomputer]

1 INTRODUCTION

Among the five senses that enable us to perceive our
environment, the sense of sight is considered as the domi-
nant sense for us humans. Thanks to the ability of visual

perception, we can process visual stimuli to obtain infor-
mation about our surrounding and react accordingly to
these observations. The desire to create intelligent ma-
chines has led to the emergence of the interdisciplinary
field of computer vision, which deals with imitating the hu-
man sense of sight and with transferring this ability to arti-
ficial systems. One of the many subareas of computer vi-
sion is object detection, which focuses on the identification
and localization of objects in different scenes [Vin14]. In
recent years, significant progress has been made in the field
of object detection, which is a fundamental component for
many applications such as autonomous driving or robot vi-
sion. For a long time, object detection architectures were
based on traditional algorithms that allowed the selection
of specific regions in images, feature extraction and classi-
fication of objects. However, the growing availability of
data and technological advancements have led to the in-
creased use of deep learning algorithms that outperform
traditional object detection methods. Current state-of-the-
art object detection architectures, which are based on deep
convolutional neural networks, are characterized by high
accuracy and speed [Xia20]. Various convolutional neural
networks form the backbone for numerous object detectors
which can be divided into two categories: two- and one-
stage detectors. Two-stage detectors separate the process of
object detection into two successive stages. Firstly, sugges-
tions for image regions that might contain objects are gen-
erated. Then, the trained classifier assigns the suggested re-
gions to object categories. Two-stage object detectors are
characterized by high accuracy, but they are relatively slow
compared to one-stage detectors [Xia20]. The most signif-
icant two-stage detectors include R-CNN [Gir13], SPP-net
[He15], Fast R-CNN [Gir15], Faster R-CNN [Ren15] and
R-FCN [Dai16]. One-stage detectors combine object loca-
tion and object classification without a prior region pro-
posal process. This increases the speed of the detectors
while maintaining a lower but still satisfactory level of ac-
curacy [Pan19]. Some of the best known one-stage detec-
tors are OverFeat [Ser13], YOLO [Red16], SSD [Liu16]
and RetinaNet [Lin17].

A

K

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 2
Article is protected by German copyright law

The topic of object detection has gained increased at-
tention in the field of academic research. Increasingly pow-
erful object detectors enable a wide-ranging design of ob-
ject detection applications in different fields [Jia19]. A
major application area for object detection are autonomous
vehicles, which require the monitoring of the surrounding
with accurate detection of interfering objects, obstacles and
the driving path [Che17], [Ban18], [Di19]. In medicine, ob-
ject detection is mainly applied to image analysis for pat-
tern and object recognition [He19], [She19], [Yoo19],
[Jae20]. Another field of application is surveillance and se-
curity, where object detection is used for the detection of
people, animals or dangerous objects [Hu15], [Sul18],
[Zou20]. In manufacturing industries, object detection can
be used for quality management. By using cameras and
deep learning methods, manufacturing defects [Fer18],
[Yan20] or material errors [Nap18] can be detected. In ad-
dition, assembly processes can be optimized using assis-
tance systems [For19] often in combination with aug-
mented reality solutions [Su19].

Alongside the increased development of object detec-
tion applications, we can observe a continuing networking
and digitization of physical objects – a phenomenon known
as the Internet of Things (IoT). Cloud computing has been
considered a fundamental element for the deployment of
IoT systems for a long time, as it enables the central pro-
cessing and storing of data. However, the increase of data
traffic and associated problems, such as long response
times and a reduced quality of services in IoT networks, has
led to the emergence of edge computing as an alternative to
cloud computing. Edge computing refers to the increasing
shift of data processing to the edge of networks in order to
minimize data transfer and reduce transmission and storage
costs [Fra20]. In the industrial sector, edge computing can
be used to develop reliable and real-time capable systems
for process automation [Cha19]. Moving complex compu-
tations and deep learning applications, such as object de-
tection, to the edge of IoT networks requires edge devices
that can perform sophisticated computations. However,
edge devices are often limited in their computational and
storage capabilities. For this reason, selecting the proper
hardware and deep learning models is an essential part of
implementing deep learning-based applications on edge de-
vices [Mul21].

In this paper we present a real-time object detection
system which is based on deep learning algorithms and
consists of cost-effective hardware. In chapter 2, we review
use cases for object detection in logistics and successful im-
plementation examples of object detection algorithms on
hardware with limited performance. Then in chapter 3, the
design of the solution is presented with the used hardware
components and object detection model. In addition, the
process of data generation and annotation as well as the
training of the object detection model is discussed in more
detail. In chapter 4, the performance of the engineered sys-

tem is evaluated, based on specific parameters. The con-
ducted examination includes on the one hand the review of
operating data of the edge devices and on the other hand
the verification of the accuracy and the general applicabil-
ity of the object detection system, also under deviating
boundary conditions. At the end of this work there is a short
summary and an outlook, in which improvement potentials
are discussed.

2 RELATED WORKS

In addition to the numerous application areas, object
detection can also be used to automate and optimize pro-
cesses in the field of logistics. Potential use cases include
the development of driverless industrial trucks, picking and
collaborative robots and assistance systems for manual
commissioning [Thi18]. One possible application includes
the development of intelligent inventory monitoring sys-
tems [Ver16]. Pallet identification and localization are
among the functions necessary for autonomous transport
systems [Li19]. [Pos20] developed a solution for palletiz-
ing and depalletizing of small load carriers by industrial ro-
bots for autonomous material handling. Even the simple
manual task of scanning barcodes to identify packages or
other objects can be replaced by automatic reading
[Han17].

Looking at the scientific publications of the last few
years, increased attempts are being made to implement
deep learning algorithms for computer vision solutions on
devices with limited computing power. These publications
are mainly limited to use cases in the areas of autonomous
driving and surveillance. In autonomous driving, the main
focus is to recognize people [Ort20], vehicles [Ais18] or
traffic signs [Zak20] and to monitor road conditions
[Pen20]. In the area of surveillance, objects [Cam19], peo-
ple [Dan20] or animals [Say21] that pose a potential danger
are to be detected. Other publications cover the areas of
smart homes [Ash19], agriculture [Maz20], production
[Žid19] and medicine [Li21]. In most of the presented
cases, one-stage detectors like YOLO and SSD are used as
object detection model. The implementation of these deep
learning models on edge devices requires suitable hardware
architectures and appropriate software [Mul21]. There are
efficient CPU- or GPU-based edge devices, such as single-
board computers (SBC), available with or without GPU ca-
pability [Had19]. In addition, several hardware options are
available to increase the speed of machine learning algo-
rithms and improve energy efficiency. These options in-
clude application specific instruction processors (ASIP),
application specific integrated circuits (ASIC) or field-pro-
grammable gate arrays (FPGA) [Sam19].

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 3
Article is protected by German copyright law

3 METHODOLOGY

3.1 APPLICATION SCENARIO AND SYSTEM DESIGN

The considered use case describes an intralogistics
material supply process. The task is to monitor a buffer
zone in which both full and empty small load carriers are
stored. The smart camera should be able to detect changes
in the inventory of small load carriers so that automatic or-
ders for new material and the collection of empty small
load carriers can be initiated. The considered buffer area
had a maximum dimension of 5 x 5 meters and the mount-
ing height of the camera was between 3 and 5 meters. The
objects to be detected were small load carriers with nomi-
nal dimensions between 300 x 200 x 120 mm and 600 x
400 x 220 mm. The smart camera should have some fea-
tures that allow it to be used in an industrial environment.
Based on these features, objectives were formulated that
had to be considered for the design of the system:

1. Cost-effectiveness: The object detection solution can
be realized with hardware costs under 100€ and free
software.

2. Real-time capability: The system should be able to
analyze videos in real time with negligible latency.

3. Accuracy: The model for the classification of small
load carriers should have a mAP (mean average pre-
cision) above 0.95.

4. Transferability: The model should work with ac-
ceptable accuracy even with other types of small load
carriers or containers, different contents and different
backgrounds.

The selection of the necessary hardware components
and detection model was carried out considering these ob-
jectives. The fulfilment of the objectives was assessed in a
final analysis, the results of which are presented in chapter
4.

3.2 SYSTEM OVERVIEW

The proposed intelligent camera is composed of three
main components: the image sensor, the processing unit
and the object detection model. The camera is controlled
via a graphical user interface that can be accessed with mo-
bile devices. A middleware enables data exchange and the
control of several connected smart cameras with the com-
munication interface. Figure 1 shows the structure of the
entire system.

The processing unit forms the core of the object detec-
tion solution. Two different single board computers were
chosen as processing unit – the Raspberry Pi 4 4GB and the
NVIDIA Jetson Nano 2GB. The Raspberry Pi 4 is a widely
used single board computer with a 1.5 GHz ARM Cortex-
A72 quad-core CPU and 4 GB RAM. The NVIDIA Jetson
Nano, which was especially developed for AI applications,
features an ARM Cortex-A57 CPU, a Maxwell GPU and 2
GB RAM. Both devices were selected due to their speed
and performance in comparison with relatively low pro-
curement prices. The chosen camera module is the Rasp-
berry Pi camera module 2. The module has an IMX219 sen-
sor from Sony and is suitable for recording high-definition
videos. In addition to the camera and the processor, other
components are necessary to support the operation of the
smart camera. To avoid overheating of the processing unit
during inference, fans were selected to cool the systems
during use. Additionally, a case was designed to shield the
hardware from external influences.

3.3 OBJECT DETECTION MODEL AND FRAMEWORKS

Due to the high accuracy and high speed, as well as the
large scope of usable frameworks, YOLOv4 was chosen as
the model for the small load carrier detection solution.
YOLOv4 extends the previous YOLO network architec-
tures by several features. This includes the selection of
PANet for feature aggregation, the addition of an SPP
block to increase the receptive field, the adaptation of the
loss function and the integration of data augmentation
methods. Additionally, YOLOv4 comprises a method for
separating overlapping bounding boxes of an object in-
stance. Batch normalization is performed by using a cross
mini-batch normalization technique. The use of the so-
called DropBlock regularization technique permits the sup-
plementary simulation of occlusions [Boc20]. Besides
YOLOv4, there is also YOLOv4-tiny, which is character-
ized by a simpler network structure and a smaller number
of parameters. The lighter version of YOLOv4 has a lower
accuracy, but is suitable for the implementation on devices
with limited computing capacity due to the reduced com-
putational complexity [Jia20].

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 4
Article is protected by German copyright law

For the CPU-based Raspberry Pi TensorFlow was
specified as the framework for inference. Due to the com-
paratively lower computing power, both YOLOv4 and
YOLOv4-tiny were implemented to allow a comparison
between the two deep learning models. TensorRT was se-
lected for the GPU-based NVIDIA Jetson Nano, since it is
especially designed for high-performance inference on
NVIDIA GPUs.

3.4 DATA SET GENERATION

The first task in the development of deep learning-
based object detectors is the collection of image data that is
used for training and validation. Over the years, datasets
with pre-annotated images have been created, which can be
used for many applications. Among the best known are
ImageNet [Den19], PASCAL VOC [Eve10] and MS
COCO [Lin14]. However, there are no datasets containing
images with or without annotations that can be used to train
learning algorithms for the considered use case. The most
suitable dataset is the LOCO dataset [May20], which con-
tains annotated images from the logistics sector that also
include small load carriers and other containers. The im-
ages of this dataset show the small load carriers mainly
from the side view, while for the present application top
view images are needed. The availability of suitable free
online images that can be used as training data is also lim-
ited.

Since no suitable datasets exist for the presented use
case, a custom dataset had to be generated as a basis for the
development of the small load carrier detection solution.
Figure 2 shows the different small load carriers used and a
selection of the objects used for filling the small load carri-
ers.

A high-quality training dataset contains images in
which the objects to be detected are represented in the same
way as they will be captured by the camera during opera-
tion [Lec15]. For the creation of the dataset, it is therefore
necessary to capture the objects from different angles and
in different arrangements to simulate possible situations in

the operation environment [Liu20]. A total of three differ-
ent locations could be selected for image generation. Figure
3 shows the locations with the three different backgrounds.

To create different situations with varying arrange-
ments of the small load carriers, videos were created during
which individual small load carriers were added, removed
or repositioned. In this way, various arrangements and
combinations of small load carriers with changing filling
states could be simulated. In a subsequent pre-annotation
step, individual frames were extracted from the recorded
videos. These frames were then annotated and added to the
dataset. In this way, a total of 3,835 images with 30,754
object instances could be generated. Overall, it was possi-
ble to create balanced datasets in which full and empty
small load carriers are equally present. A detailed overview
with a breakdown of the exact composition of the datasets
can be found in table 1.

Table 1. Composition of self-generated dataset

3.5 TRAINING PROCESS

Due to the capacity limitations of the selected edge de-
vices, the training of the object detection models had to be
performed on a more powerful system. The training of the
models was carried out on a server of the Institute of Mate-
rial Handling and Logistics on a NVIDIA GeForce GTX
2070 graphics card. The custom Darknet framework writ-
ten by Joseph Redmon [Red13] was used. A total of three
different datasets, representing different combinations of
the base datasets, were used for training:

• Dataset 1: Base dataset 1 (black)

• Dataset 2: Base dataset 1 (black) and base da-
taset 2 (white)

• Dataset 3: Base dataset 1 (black), base dataset 2
(white) and base dataset 3 (wood)

These datasets were split into a training set (70%), a
validation set (20%) and a testing set (10%). The training

Number of
images

Number of
annotations

Class balance
(empty/full)

Base dataset 1 (black) 1,387 12,367 52.6% / 47.4%
Base dataset 2 (white) 1,577 11,317 40.9% / 59.1%
Base dataset 3 (wood) 871 7,070 47.4% / 52.6%
Total 3,835 30,754 47.1% / 52.9%

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 5
Article is protected by German copyright law

and validation set where used for fitting and tuning the
weights of the object detection model, whereas the training
set was used to assess the performance of the trained model.
The selected network resolution was 416 x 416 pixels. Con-
volutional weights pre-trained on the COCO dataset were
used as initial training weights [Boc18]. Depending on the
size of the training and validation datasets, the training time
varied between half an hour and one hour for YOLOv4-tiny
and between five and six hours for YOLOv4.

4 EXPERIMENTAL RESULTS

4.1 PERFORMANCE MEASUREMENT

At the beginning of the design of the automatic detec-
tion solution for small load carriers, the following objec-
tives were defined, which should be accomplished during
the development of the system: cost-effectiveness, real-
time capability, accuracy and transferability (see chapter
3.1). By selecting suitable hardware, the costs for the AI-
based cameras could be reduced to a minimum. Both sys-
tems, which feature the Raspberry Pi or the NVIDIA Jetson
Nano as the computing unit, can be constructed with hard-
ware costs under €100, including the camera module and
the other additional components. The subsequent analysis
was intended to determine the degree of fulfillment of the
other defined objectives for the small load carrier detection
solution.

To assess the performance of the object detector dif-
ferent metrices were used. The speed of the detection was
measured in processed frames per second. The accuracy of
the object detection was evaluated using the following cri-
teria: precision, recall and mean average precision (mAP).
A detection algorithm returns the predicted detections
{(𝑏𝑏𝑘𝑘 , 𝑐𝑐𝑘𝑘, 𝑝𝑝𝑘𝑘)}𝑘𝑘 of an object 𝑘𝑘, where 𝑏𝑏𝑘𝑘 corresponds to the
bounding box, 𝑐𝑐𝑘𝑘 to the predicted category and 𝑝𝑝𝑘𝑘 to the
confidence score. The correspondence between the de-
tected objects and the ground truth boxes is checked for
each image 𝐼𝐼𝑗𝑗 to determine the accuracy of the predictions.
For a predicted detection to be considered a true positive,
the overlap between the predicted bounding box and the
ground truth box, also known as Intersection over Union
(IoU), must meet or exceed a specified threshold. Addition-
ally, the detected category needs to match the ground truth
label and the confidence score must exceed a specified
threshold 𝛽𝛽 for the detection to be accepted [Liu20]. Preci-
sion describes the number of correctly detected objects in
relation to the total number of detected objects by the algo-
rithm at a given threshold. Recall is defined as the ratio be-
tween the number of detected objects and the total number
of ground truth boxes. Precision and recall for an object
category 𝐶𝐶𝑖𝑖 in an image or an image set can be calculated
using the number of true positives (TP), false positives (FP)
and false negatives (FN).

𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖𝑖𝑖

𝑅𝑅𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖𝑖𝑖

Based on the precision and the recall of an object cat-
egory, the average precision (AP) can be calculated. By
varying the threshold value β, different recall and precision
values are obtained, from which a precision-recall curve
can be derived. The AP summarizes the area under the
curve and is calculated as the mean of the precision values
of specified recall levels r [Eve10]. The AP of all object
categories can be used to determine the mean average pre-
cision, which is a measure of the detection performance of
the model across all categories [Xia20].

𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 = � 𝑃𝑃𝐶𝐶𝑖𝑖(𝑟𝑟)𝑑𝑑𝑑𝑑
1

0

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
�𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

The mAP is often used to compare the performance of
different algorithms. However, the way of determining the
mAP differs depending on the number of considered IoU
thresholds [Kuz20].

4.2 DEVICE UTILIZATION AND LATENCY

A real-time capable detector requires acceptable ob-
ject detection latency and uninterrupted execution of all ap-
plications running on the device that are responsible for
small load carrier detection or data exchange. For this pur-
pose, the performance data of the Raspberry Pi and the Jet-
son Nano were collected and analyzed during operation.
On the Raspberry Pi, object detection could be performed
with a frame rate of about 0.2 frames per second using
YOLOv4. The average object detection for a single image
takes about 4.5 seconds. Further image processing steps re-
quire another 0.34 seconds, which brings the total time for
analyzing a frame to 4.84 seconds. If YOLOv4-tiny is used
as object detection model on the Raspberry Pi a frame rate
of about 1.3 frames per second is achieved. With this frame
rate, changes in the number of boxes can be detected with-
out major delays. The inference time is about the same as
the processing time for the images, reducing the total de-
tection time to about 0.79 seconds. On the Jetson Nano,
only YOLOv4 was implemented as the object detection
model due to its higher performance compared to
YOLOv4-tiny. Due to its graphic card and the TensorRT
framework, the Jetson Nano achieves a frame rate of 4.5
frames per second. The average total time for detection is
0.22 seconds. The inference time accounts for the largest
part with 0.21 seconds, the average image processing time
is only 0.01 seconds. Figure 4 shows the different times for
inference and image processing on the different devices.

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 6
Article is protected by German copyright law

Figure 4. Comparison of average inference and processing times

The loading time of the models is also a critical factor.
Before the inference can start, the model must be loaded
once at the beginning. The different loading times can be
found in figure 5. Since it takes several minutes to load the
models, depending on the model and device, the object de-
tection application must run continuously to update the data
in real time without delay.

The Raspberry Pi never reaches its limits when it
comes to memory usage. If only the object detection appli-
cation is running, an average of about 2.3 GB RAM is
needed. Running all applications at the same time increases
the memory usage to 2.6 GB. The difference in memory
usage between YOLOv4 and YOLOv4-tiny is not signifi-
cant. During operation without a fan, the Raspberry Pi
reached temperatures around 80 °C. With additional cool-
ing the temperature could be kept at a constant level of 50
°C. Due to its smaller RAM, there were occasional delays
and crashes when operating the Jetson Nano with graphical
user interface. Operating the Jetson Nano without graphical
output resulted in a maximum memory usage of 1.8 GB.
Without additional cooling, the Jetson Nano heated up to
95 °C at full load. By using the fans, a constant operating
temperature of around 40 °C could be maintained. It is im-
portant to note that these analyses were performed for ob-
ject detection with a live stream at 480p video quality. In-
creasing the video quality results in increased processing
times and memory utilization.

4.3 ACCURACY OF OBJECT DETECTION

The results show that the mean average precision of
the YOLOv4 and YOLOv4-tiny models is always above
99%. Overall, YOLOv4 delivers better results, but the dif-
ference to YOLOv4-tiny is marginal. The reliability of full
and empty small load carrier detection varies depending on
the image data used. Overall, the number of false negatives
almost consistently exceeds the number of false positives.
This means that predominantly small load carriers are not
detected as such, rather than objects being falsely identified
as full or empty small load carriers.

In general, both YOLOv4 and YOLOv4-tiny provide
a good reliability in the detection of small load carriers.
Both free-standing and collocated small load carriers are
detected with high reliability. The average IoU also appears
to be sufficient for the use case. Figure 6 shows two exam-
ples of error-free small load carrier detection.

Figure 6. Visualization of exemplary detection results

Looking at the different types of errors, we can see that
a large part of false detections are false negatives represent-
ing small load carriers that were not recognized. False pos-
itives, which make up the smaller portion of incorrect de-
tections, can be interfering objects that are detected as
boxes or boxes that are detected, but incorrectly classified
as full or empty. These interfering objects include, for ex-
ample, people captured by the camera. Reasons for misi-
dentified empty boxes include dirt, reflections or shadows
that are sometimes mistakenly recognized as objects in the
box. Furthermore, it may occur that the items in the box do
not distinguish themselves enough from the box due to
their size or color or that they are partially covered by the
edge of the box, and thus the box is incorrectly identified
as empty instead of full. However, the erroneous detections
represent only a very small proportion of the total detec-
tions.

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 7
Article is protected by German copyright law

4.4 TRANSFERABILITY OF OBJECT DETECTION

4.4.1 DEVIATING CONTAINERS AND CONTENTS

Another desired feature of the developed object detec-
tor is its applicability in different scenarios. The object de-
tection solution should be able to be used for the detection
and classification of different types of small load carriers
without much additional re-training effort. Small load car-
riers and other containers not used for training were de-
ployed to test the generalizability of the detector. Besides
the new boxes, different types of fill items were selected
that do not appear in the training dataset. In addition to nor-
mal sized items, five smaller objects were selected to deter-
mine the minimum size at which an item in the box would
reliably be detected. The smallest objects were a cube with
an edge length of 2.5 cm and a cylindrical metal part about
1.5 cm long. Figure 7 displays all the items used.

Figure 7. Overview of new containers and filling objects

Table 3 shows the results of inference on the new test
data. As in previous evaluations, a confidence threshold of
0.75 was chosen for inference. The dataset consisted of 231
images with a total of 680 objects to be detected. About
85% of full and empty small load carriers were correctly
detected, using both YOLOv4 and YOLOv4-tiny. In con-
trast to the previous accuracy analyses, there was no signif-
icant difference between the two different models.

Generally, the new boxes were recognized, but classi-
fied as the wrong type, depending on the filling object.
Only in rare cases an object instance was not identified as

a full or empty box. The partially changed shapes and col-
ors of the boxes did not have a significant negative influ-
ence on the detection. A more detailed examination of the
error types revealed that about 80% of the false detections
was caused by boxes containing certain small items. The
smallest test object was rarely detected as a fill object due
to its small size and reflective surface. The other small ob-
jects were detected more reliably, although problems oc-
curred when the color difference to the box was not suffi-
cient. Sometimes parts of the object were also hidden by
the side panels of the box. Boxes filled with one of the two
large test objects were always detected accurately.

4.4.2 DEVIATING CONTAINERS AND CONTENTS

Similar to different box types and filling materials, de-
viating backgrounds should not negatively influence the re-
sult of object detection. Due to spatial limitations, this anal-
ysis was limited to different combinations of train and test
datasets out of the self-generated base datasets. Table 4
shows the results of the detection models trained with var-
ying non-augmented datasets. The results of the models'
analysis with test datasets containing only images with
backgrounds that did not appear in the training dataset are
highlighted in the table.

YOLOv4 YOLOv4-tiny
True postitives 580 583
False positives 71 73
False negatives 100 97

Table 2. Detection results of YOLOv4 and YOLOv4-tiny detectors

DS 1 DS 2 DS 3 DS 1 DS 2 DS 3

Mean average precision @0.50 99.75% 99.95% 99.92% 99.80% 99.78% 99.85%
Average precision empty box 99.84% 99.90% 99.91% 99.83% 99.71% 99.84%
Average precision full box 99.66% 99.99% 99.92% 99.78% 99.85% 99.85%
Precision 1.00 1.00 1.00 1.00 1.00 1.00
Recall 1.00 0.99 1.00 1.00 0.99 0.99
F1-Score 1.00 1.00 1.00 1.00 0.99 0.99
True positives 1,144 2,277 2,845 1,143 2,268 2,835
False positives 2 7 5 2 6 8
False negatives 2 12 14 3 21 24
Average IoU 91.82% 92.58% 92.47% 91.73% 93.21% 90.65%

YOLOv4 YOLOv4-tiny

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 8
Article is protected by German copyright law

full and empty small load carriers, although some of the
datasets also comprise deviating filling objects. The perfor-
mance difference between YOLOv4 and YOLOv4-tiny is
also noticeable in this assessment.

The tests show that it is possible to use the smart camera in
different locations without retraining, provided that the
same boxes and filling objects must be detected which were
also used during creation of the training data. However, this
statement is to be considered with reservation, since a more
comprehensive analysis with a larger number of different
backgrounds was not possible due to the limited space
available.

5 CONCLUSIONS AND FUTURE WORK

Within the scope of this work an object detection sys-
tem was developed, which can be deployed for monitoring
the inventory of small load carriers within buffer zones. By
implementing fast object detectors with suitable accuracy
on hardware with limited computational and storage capac-
ity, it was possible to create an intelligent camera within
the context of the use case that detects the specified objects
with a high reliability. One prerequisite for high accuracy
is that the images used for training the models include the
same boxes, filling objects and backgrounds that are en-
countered in the practical application scenario. The ap-
plicability of the smart cameras under changed conditions
could be partially confirmed. Regardless of high accuracies
in some cases during the tests with unknown locations,
boxes and filling objects, an extended analysis is necessary
to evaluate the general transferability of the object detec-
tion solution.

Despite the good performance, there are some aspects
of the solution that could be improved and simplified for
operation in a real environment. One possibility is to ana-
lyze the effect of increasing the network resolution on the
results and the latency of the detection. In addition, other
YOLO models, such as Scaled-YOLOv4 or YOLOv5,
could be implemented. The use of alternative models, such
as EfficientDet, could also be considered. Extending the
training dataset with images showing varying scenarios
with different types of boxes, backgrounds and filling ob-
jects, could facilitate the use of the solution at locations
with deviating conditions and increase the overall general-
izability.

LITERATURE

[Ais18] Aishwarya, Chaya N., Rajshekhar Mukher-
jee, and Dharmendra Kumar Mahato. 2018.
Multilayer Vehicle Classification Integrated
with Single Frame Optimized Object Detec-
tion Framework Using CNN Based Deep
Learning Architecture. In 2018 IEEE Inter-
national Conference on Electronics, Com-
puting and Communication Technologies,
1–6.

[Ash19] Ashaj, Sudad J., and Ergun Erçelebi. 2019.
Reduce Cost Smart Power Management
System by Utilize Single Board Computer
Artificial Neural Networks for Smart Sys-
tems. International Journal of Computa-
tional Intelligence Systems 12 (2): 1113–20.

[Ban18] Banerjee, Koyel, et al. 2018. Online Cam-
era LiDAR Fusion and Object Detection on
Hybrid Data for Autonomous Driving. In
2018 IEEE Intelligent Vehicles Symposium
(IV), 1632–38.

[Boc18] Bochkovskiy, Alexey. 2018. Darknet:
GitHub. Accessed March 12, 2021.
https://github.com/AlexeyAB/darknet.

[Boc20] Bochkovskiy, Alexey, Chien-Yao Wang,
and Hong-Yuan Mark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object De-
tection.

[Cam19] Cambay, V. Yusuf, Aysegul Ucar, and M.
Ali Arserim. 2019. Object Detection on
FPGAs and GPUs by Using Accelerated
Deep Learning. In 2019 International Arti-
ficial Intelligence and Data Processing
Symposium (IDAP), 1–5.

[Cha19] Chalapathi, G. S. S., Vinay Chamola,
Aabhaas Vaish, and Rajkumar Buyya. 2019.
Industrial Internet of Things (IIoT) Applica-
tions of Edge and Fog Computing: A Review
and Future Directions.

[Che17] Chen, Xiaozhi, et al. 2017. Multi-View 3D
Object Detection Network for Autonomous

Training data DS 1 DS 2 DS 3 DS 1 DS 2 DS 3
DS 1 99.75% 97.27% 99.29% 99.80% 96.05% 99.22%
DS 2 99.92% 99.87 % 99.58% 99.70% 99.81% 99.38%
DS 3 99.90% 99.89% 99.62% 99.84% 99.79% 99.65%

YOLOv4 YOLOv4-tiny

Test data

Table 4. Detection results (mAP) testing with deviating backgrounds

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 9
Article is protected by German copyright law

Driving. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition
(CVPR), 6526–34.

[Dan20] Danish, Matthew, et al. 2020. DeepDish:
Multi-Object Tracking with an Off-the-Shelf
Raspberry Pi. In Proceedings of the Third
ACM International Workshop on Edge Sys-
tems, Analytics and Networking, 37– 42.

[Dai16] Dai, Jifeng, et al. 2016. R-FCN: Object De-
tection via Region-Based Fully Convolu-
tional Networks.

[Den19] Deng, Jia, et al. 2019. ImageNet: A
LargeScale Hierarchical Image Database.
In 2019 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 248–55.

[Di19] Di, Feng, et al. 2019. Deep Multi-Modal
Object Detection and Semantic Segmenta-
tion for Autonomous Driving: Datasets,
Methods, and Challenges.

[Eve10] Everingham, Mark, et al. 2010. The Pascal
Visual Object Classes (VOC) Challenge. In-
ternational Journal of Computer Vision 88
(2): 303–38.

[Fer18] Ferguson, Max K., el al. 2018. Detection
and Segmentation of Manufacturing Defects
with Convolutional Neural Networks and
Transfer Learning. Smart and sustainable
manufacturing systems 2 (1).

[For19] Forsman, Mona, et al. 2019. An AI-Enabled
Assembly Support System for Industrial
Production. In 5th Norwegian Big Data
Symposium (NOBIDS) 2019.

[Fra20] França, Reinaldo Padilha, et al. 2020. An
Overview of the Edge Computing in the
Modern Digital Age. In Fog/Edge Compu-
ting for Security, Privacy, and Applications,
edited by Wei Chang and Jie Wu. 1st ed.,
33–52. Cham: Springer.

[Gir13] Girshick, Ross, et al. 2013. Rich Feature Hi-
erarchies for Accurate Object Detection
and Semantic Segmentation.

[Gir15] Girshick, Ross. 2015. Fast R-CNN. In 2015
IEEE International Conference on Com-
puter Vision (ICCV), 1440–48.

[Had19] Hadidi, Ramyad, et al. 2019. Characterizing
the Deployment of Deep Neural Networks
on Commercial Edge Devices. In 2019

IEEE International Symposium on Work-
load Characterization (IISWC), 35–48.

[Han17] Hansen, Daniel Kold, et al. 2017. Real-Time
Barcode Detection and Classification Using
Deep Learning. In Proceedings of the 9th
International Joint Conference on Computa-
tional Intelligence, 321– 27.

[He15] He, Kaiming, et al. 2015. Spatial Pyramid
Pooling in Deep Convolutional Networks
for Visual Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence 37 (9): 1904–16.

[He19] He, Xin, et al. 2019. Computer-Aided Clin-
ical Skin Disease Diagnosis Using CNN and
Object Detection Models. In 2019 IEEE In-
ternational Conference on Big Data (Big
Data), 4839–44.

[Hu15] Hu, Guosheng, et al. 2015. When Face
Recognition Meets with Deep Learning: An
Evaluation of Convolutional Neural Net-
works for Face Recognition. In 2015 IEEE
International Conference on Computer Vi-
sion Workshop (ICCVW), 4321–29.

[Jae20] Jaeger, Paul F., et al. 2020. Retina U-Net:
Embarrassingly Simple Exploitation of Seg-
mentation Supervision for Medical Object
Detection. In Proceedings of the Machine
Learning for Health NeurIPS Workshop,
171–83.

[Jia19] Jiao, Licheng, et al. 2019. A Survey of Deep
Learning-Based Object Detection. IEEE
Access 7: 128837–68.

[Jia20] Jiang, Zicong, et al. 2020. Real-Time Object
Detection Method Based on Improved
YOLOv4-Tiny.

[Kuz20] Kuznetsova, Alina, et al. 2020. The Open
Images Dataset V4: Unified Image Classifi-
cation, Object Detection, and Visual Rela-
tionship Detection at Scale. International
Journal of Computer Vision 128 (7): 1956–
81.

[Lec15] LeCun, Yann, Yoshua Bengio, and Geof-
frey Hinton. 2015. Deep Learning. Nature
521 (7553): 436–44.

[Li19] Li, Tianjian, et al. 2019. Application of Con-
volution Neural Network Object Detection
Algorithm in Logistics Warehouse. The
Journal of Engineering 2019 (23): 9053–58.

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 10
Article is protected by German copyright law

[Li21] Li, Hongjia, et al. 2021. Real-Time Mobile
Acceleration of DNNs. In Proceedings of the
26th Asia and South Pacific Design Auto-
mation Conference, 581–86.

[Lin14] Lin, Tsung-Yi, et al. 2014. Microsoft
COCO: Common Objects in Context. In
Computer Vision – ECCV 2014, edited by
David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars. Cham: Springer.

[Liu16] Liu, Wei, et al. 2016. SSD: Single Shot
MultiBox Detector. In Computer Vision
ECCV 2016, edited by Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, 21–37.
Cham: Springer International Publishing.

[Liu20] Liu, Li, et al. 2020. Deep Learning for Ge-
neric Object Detection: A Survey. Interna-
tional Journal of Computer Vision 128 (2):
261–318.

[Lin17] Lin, Tsung-Yi, et al. 2017. Focal Loss for
Dense Object Detection. In 2017 IEEE Con-
ference on Computer Vision (ICCV), 2999–
3007.

[Maz20] Mazzia, Vittorio, et al. 2020. Real-Time Ap-
ple Detection System Using Embedded Sys-
tems with Hardware Accelerators: An Edge
AI Application. IEEE Access 8: 9102–14.

[May20] Mayershofer, Christopher, et al. 2020.
LOCO: Logistics Objects in Context. In
19th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA),
612–17.

[Mul21] Mulimani, Madhura S., and Rashmi R.
Rachh. 2021. Edge Computing in
Healthcare Systems. In Deep Learning and
Edge Computing Based Solutions for Smart
Healthcare, edited by Suresh A. and Sara
Paiva, 63–100. Singapore: Springer.

[Nap18] Napoletano, Paolo, Flavio Piccoli, and Rai-
mondo Schettini. 2018. Anomaly Detection
in Nanofibrous Materials by CNN-Based
Self-Similarity. Sensors 18 (1): 209–24.

[Ort20] Ortiz Castelló, Vicent, et al. 2020. Real-
Time on-Board Pedestrian Detection Using
Generic Single-Stage Algorithms and on-
Road Databases. International Journal of
Advanced Robotic Systems 17 (5).

[Pan19] Pang, Yanwei, and Jiale Cao. 2019. Deep
Learning in Object Detection. In Deep

Learning in Object Detection and Recogni-
tion, edited by Xiaoyue Jiang, Abdenour
Hadid, and Yanwei Pang, 19–57. Singa-
pore: Springer.

[Pen20] Pena-Caballero, Carlos, et al. 2020. Real-
Time Road Hazard Information System. In-
frastructures 5 (9): 75–93.

[Pos20] Poss, Christian, et al. 2020. Enabling Ro-
bust and Autonomous Materialhandling in
Logistics Through Applied Deep Learning
Algorithms. In Deep Learning Applications,
edited by Bose, Moamar Sayed-
Mouchaweh, Arif M. Wani, and Mehmed
Kantardzic, 155–76. Singapore: Springer.

[Red13] Redmon, Joseph. 2013. Darknet: Open
Source Neural Networks in C. Accessed
March 03, 2021. https://pjreddie.com/dark-
net/.

[Red16] Redmon, Joseph, et al. 2016. You Only Look
Once: Unified, Real-Time Object Detection.
In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 779–
88.

[Ren15] Ren, Shaoqing, et al. 2015. Faster R-CNN:
Towards RealTime Object Detection with
Region Proposal Networks.

[Sam19] Samie, Farzad, Lars Bauer, and Jorg Hen-
kel. 2019. From Cloud down to Things: An
Overview of Machine Learning in Internet
of Things. IEEE Internet of Things Journal
6 (3): 4921– 34.

[Say21] Sayagavi, Ashwini V., et al. 2021. Deep
Learning Methods for Animal Recognition
and Tracking to Detect Intrusions. In Infor-
mation and Communication Technology for
Intelligent Systems: Proceedings of ICTIS
2020, 617–26.

[Ser13] Sermanet, Pierre, et al. 2013. OverFeat: In-
tegrated Recognition, Localization and De-
tection Using Convolutional Networks.

[She19] Shen, Li, et al. 2019. Deep Learning to Im-
prove Breast Cancer Detection on Screen-
ing Mammography. Scientific Reports 9 (1):
12495–507.

[Su19] Su, Yongzhi, et al. 2019. Deep Multi-Sate
Object Pose Estimation for Augmented Re-
ality Assembly. In 2019 IEEE International
Symposium on Mixed and Augmented Re-
ality Adjunct, 222–27.

DOI: 10.2195/lj_Proc_klos_en_202112_01
URN: urn:nbn:de:0009-14-54221

© 2021 Logistics Journal: Proceedings – ISSN 2192-9084 Seite 11
Article is protected by German copyright law

[Sul18] Sultani, Waqas, Chen Chen, and Mubarak
Shah. 2018. Real-World Anomaly Detection
in Surveillance Videos. In Proceedings of
the 2018 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 6479–88.

[Thi18] Thiel, Marko, Johannes Hinckeldeyn, and
Jochen Kreutzfeldt. 2018. Deep-Learning-
Verfahren Zur 3D-Objekterkennung in Der
Logistik. Logistics Journal: Proceedings
2018.

[Ver16] Verma, Nishchal K., et al. 2016. Object
Identification for Inventory Management
Using Convolutional Neural Network. In
2016 IEEE Applied Imagery Pattern Recog-
nition Workshop (AIPR), 1–6.

[Vin14] Vincze, Markus, Sven Wachsmuth, and
Gerhard Sagerer. 2014. Perception and
Computer Vision. In The Cambridge Hand-
book of Artificial Intelligence, edited by
Keith Frankish and William M. Ramsey,
168–90. Cambridge: Cambridge University
Press.

[Xia20] Xiao, Youzi, et al. 2020. A Review of Object
Detection Based on Deep Learning. Multi-
media Tools and Applications 79: 23729–
91.

[Yan20] Yang, Jing, et al. 2020. Using Deep Learn-
ing to Detect Defects in Manufacturing: A
Comprehensive Survey and Current Chal-
lenges. Materials 13 (24): 5755–88.

[Yoo19] Yoo, Sunghwan, et al. 2019. Prostate Can-
cer Detection Using Deep Convolutional
Neural Networks. Scientific Reports 9 (1).

[Zak20] Zaki, Pavly Salah, et al. 2020. Traffic Signs
Detection and Recognition System Using
Deep Learning.

[Žid19] Židek, Kamil, et al. 2019. An Automated
Training of Deep Learning Networks by 3D
Virtual Models for Object Recognition.
Symmetry 11 (4): 496.

[Zou20] Zou, Lekang, Tanaka Yusuke, and Iba Hi-
toshi. 2020. Dangerous Objects Detection
of X-Ray Images Using Convolution Neural
Network. In Security with Intelligent Com-
puting and Big-Data Services, edited by L.
C. Jain, 714–28. Cham: Springer Interna-
tional Publishing.

M.Sc. Paolo Pagani is working as a Research Assistant at
the chair of Robotics and Interactive Systems, Institute
for Material Handling and Logistics (IFL), Karlsruhe In-
stitute of Technology (KIT).
E-Mail: paolo.pagani@kit.edu

M.Sc. Matthias Elia Klos studied Industrial Engineering
and Management Management at the Karlsruhe Institute
of Technology (KIT).

Address: Institute for Material Handling and Logistics
(IFL), Karlsruhe Institute of Technology (KIT), Gotthard-
Franz-Str. 8, 76131 Karlsruhe, Germany.

