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bstract: Technological advances and increasing 
data traffic in the IoT environment lead to the relo-

cation of sophisticated data processing to the edge of net-
works. At the same time, powerful object detection ap-
proaches based on deep neural networks have been 
developed in recent years. In this paper, an intelligent 
camera based on deep learning algorithms and consisting 
of low-cost hardware with limited computational and 
storage capacity is presented. The developed object detec-
tion solution enables real-time monitoring of the inven-
tory of filled and empty small load carriers in a buffer 
zone. 

[Keywords: Computer Vision, Object Detection, Deep Learning, 
YOLO, Raspberry Pi, NVIDIA Jetson Nano, Single-Board Com-
puter] 

urzbeschreibung: Der technologische Fortschritt 
und zunehmende Datenströme im IoT-Umfeld füh-

ren dazu, dass anspruchsvolle Datenverarbeitungspro-
zesse an den Rand von Netzwerken verlagert werden. 
Gleichzeitig wurden in den letzten Jahren leistungsfähige 
Objekterkennungsansätze entwickelt, die auf tiefen neu-
ronalen Netzen basieren. Im Rahmen dieser Arbeit wird 
eine intelligente Kamera vorgestellt, welche auf Deep-
Learning-Algorithmen basiert und aus kostengünstiger 
Hardware mit beschränkter Rechen- und Speicherkapa-
zität besteht. Die entwickelte Objekterkennungslösung 
ermöglicht die Überwachung des Bestands von gefüllten 
und leeren Kleinladungsträgern in einer Pufferzone in 
Echtzeit.  

[Schlüsselwörter: Computer Vision, Objekterkennung, Deep 
Learning, YOLO, Raspberry Pi, NVIDIA Jetson Nano, Einplati-
nencomputer] 

1 INTRODUCTION 

Among the five senses that enable us to perceive our 
environment, the sense of sight is considered as the domi-
nant sense for us humans. Thanks to the ability of visual 

perception, we can process visual stimuli to obtain infor-
mation about our surrounding and react accordingly to 
these observations. The desire to create intelligent ma-
chines has led to the emergence of the interdisciplinary 
field of computer vision, which deals with imitating the hu-
man sense of sight and with transferring this ability to arti-
ficial systems. One of the many subareas of computer vi-
sion is object detection, which focuses on the identification 
and localization of objects in different scenes [Vin14]. In 
recent years, significant progress has been made in the field 
of object detection, which is a fundamental component for 
many applications such as autonomous driving or robot vi-
sion. For a long time, object detection architectures were 
based on traditional algorithms that allowed the selection 
of specific regions in images, feature extraction and classi-
fication of objects. However, the growing availability of 
data and technological advancements have led to the in-
creased use of deep learning algorithms that outperform 
traditional object detection methods. Current state-of-the-
art object detection architectures, which are based on deep 
convolutional neural networks, are characterized by high 
accuracy and speed [Xia20]. Various convolutional neural 
networks form the backbone for numerous object detectors 
which can be divided into two categories: two- and one-
stage detectors. Two-stage detectors separate the process of 
object detection into two successive stages. Firstly, sugges-
tions for image regions that might contain objects are gen-
erated. Then, the trained classifier assigns the suggested re-
gions to object categories. Two-stage object detectors are 
characterized by high accuracy, but they are relatively slow 
compared to one-stage detectors [Xia20]. The most signif-
icant two-stage detectors include R-CNN [Gir13], SPP-net 
[He15], Fast R-CNN [Gir15], Faster R-CNN [Ren15] and 
R-FCN [Dai16]. One-stage detectors combine object loca-
tion and object classification without a prior region pro-
posal process. This increases the speed of the detectors 
while maintaining a lower but still satisfactory level of ac-
curacy [Pan19]. Some of the best known one-stage detec-
tors are OverFeat [Ser13], YOLO [Red16], SSD [Liu16] 
and RetinaNet [Lin17].  
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The topic of object detection has gained increased at-
tention in the field of academic research. Increasingly pow-
erful object detectors enable a wide-ranging design of ob-
ject detection applications in different fields [Jia19]. A 
major application area for object detection are autonomous 
vehicles, which require the monitoring of the surrounding 
with accurate detection of interfering objects, obstacles and 
the driving path [Che17], [Ban18], [Di19]. In medicine, ob-
ject detection is mainly applied to image analysis for pat-
tern and object recognition [He19], [She19], [Yoo19], 
[Jae20]. Another field of application is surveillance and se-
curity, where object detection is used for the detection of 
people, animals or dangerous objects [Hu15], [Sul18], 
[Zou20]. In manufacturing industries, object detection can 
be used for quality management. By using cameras and 
deep learning methods, manufacturing defects [Fer18], 
[Yan20] or material errors [Nap18] can be detected. In ad-
dition, assembly processes can be optimized using assis-
tance systems [For19] often in combination with aug-
mented reality solutions [Su19]. 

Alongside the increased development of object detec-
tion applications, we can observe a continuing networking 
and digitization of physical objects – a phenomenon known 
as the Internet of Things (IoT). Cloud computing has been 
considered a fundamental element for the deployment of 
IoT systems for a long time, as it enables the central pro-
cessing and storing of data. However, the increase of data 
traffic and associated problems, such as long response 
times and a reduced quality of services in IoT networks, has 
led to the emergence of edge computing as an alternative to 
cloud computing. Edge computing refers to the increasing 
shift of data processing to the edge of networks in order to 
minimize data transfer and reduce transmission and storage 
costs [Fra20]. In the industrial sector, edge computing can 
be used to develop reliable and real-time capable systems 
for process automation [Cha19]. Moving complex compu-
tations and deep learning applications, such as object de-
tection, to the edge of IoT networks requires edge devices 
that can perform sophisticated computations. However, 
edge devices are often limited in their computational and 
storage capabilities. For this reason, selecting the proper 
hardware and deep learning models is an essential part of 
implementing deep learning-based applications on edge de-
vices [Mul21]. 

In this paper we present a real-time object detection 
system which is based on deep learning algorithms and 
consists of cost-effective hardware. In chapter 2, we review 
use cases for object detection in logistics and successful im-
plementation examples of object detection algorithms on 
hardware with limited performance. Then in chapter 3, the 
design of the solution is presented with the used hardware 
components and object detection model. In addition, the 
process of data generation and annotation as well as the 
training of the object detection model is discussed in more 
detail. In chapter 4, the performance of the engineered sys-

tem is evaluated, based on specific parameters. The con-
ducted examination includes on the one hand the review of 
operating data of the edge devices and on the other hand 
the verification of the accuracy and the general applicabil-
ity of the object detection system, also under deviating 
boundary conditions. At the end of this work there is a short 
summary and an outlook, in which improvement potentials 
are discussed. 

2 RELATED WORKS 

In addition to the numerous application areas, object 
detection can also be used to automate and optimize pro-
cesses in the field of logistics. Potential use cases include 
the development of driverless industrial trucks, picking and 
collaborative robots and assistance systems for manual 
commissioning [Thi18]. One possible application includes 
the development of intelligent inventory monitoring sys-
tems [Ver16]. Pallet identification and localization are 
among the functions necessary for autonomous transport 
systems [Li19]. [Pos20] developed a solution for palletiz-
ing and depalletizing of small load carriers by industrial ro-
bots for autonomous material handling. Even the simple 
manual task of scanning barcodes to identify packages or 
other objects can be replaced by automatic reading 
[Han17]. 

Looking at the scientific publications of the last few 
years, increased attempts are being made to implement 
deep learning algorithms for computer vision solutions on 
devices with limited computing power. These publications 
are mainly limited to use cases in the areas of autonomous 
driving and surveillance. In autonomous driving, the main 
focus is to recognize people [Ort20], vehicles [Ais18] or 
traffic signs [Zak20] and to monitor road conditions 
[Pen20]. In the area of surveillance, objects [Cam19], peo-
ple [Dan20] or animals [Say21] that pose a potential danger 
are to be detected. Other publications cover the areas of 
smart homes [Ash19], agriculture [Maz20], production 
[Žid19] and medicine [Li21]. In most of the presented 
cases, one-stage detectors like YOLO and SSD are used as 
object detection model. The implementation of these deep 
learning models on edge devices requires suitable hardware 
architectures and appropriate software [Mul21]. There are 
efficient CPU- or GPU-based edge devices, such as single-
board computers (SBC), available with or without GPU ca-
pability [Had19]. In addition, several hardware options are 
available to increase the speed of machine learning algo-
rithms and improve energy efficiency. These options in-
clude application specific instruction processors (ASIP), 
application specific integrated circuits (ASIC) or field-pro-
grammable gate arrays (FPGA) [Sam19].  
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3 METHODOLOGY 

3.1 APPLICATION SCENARIO AND SYSTEM DESIGN 

The considered use case describes an intralogistics 
material supply process. The task is to monitor a buffer 
zone in which both full and empty small load carriers are 
stored. The smart camera should be able to detect changes 
in the inventory of small load carriers so that automatic or-
ders for new material and the collection of empty small 
load carriers can be initiated. The considered buffer area 
had a maximum dimension of 5 x 5 meters and the mount-
ing height of the camera was between 3 and 5 meters. The 
objects to be detected were small load carriers with nomi-
nal dimensions between 300 x 200 x 120 mm and 600 x 
400 x 220 mm. The smart camera should have some fea-
tures that allow it to be used in an industrial environment. 
Based on these features, objectives were formulated that 
had to be considered for the design of the system: 

1. Cost-effectiveness: The object detection solution can 
be realized with hardware costs under 100€ and free 
software. 

2. Real-time capability: The system should be able to 
analyze videos in real time with negligible latency. 

3. Accuracy: The model for the classification of small 
load carriers should have a mAP (mean average pre-
cision) above 0.95. 

4. Transferability: The model should work with ac-
ceptable accuracy even with other types of small load 
carriers or containers, different contents and different 
backgrounds. 

The selection of the necessary hardware components 
and detection model was carried out considering these ob-
jectives. The fulfilment of the objectives was assessed in a 
final analysis, the results of which are presented in chapter 
4.  

3.2 SYSTEM OVERVIEW 

The proposed intelligent camera is composed of three 
main components: the image sensor, the processing unit 
and the object detection model. The camera is controlled 
via a graphical user interface that can be accessed with mo-
bile devices. A middleware enables data exchange and the 
control of several connected smart cameras with the com-
munication interface. Figure 1 shows the structure of the 
entire system. 

 

The processing unit forms the core of the object detec-
tion solution. Two different single board computers were 
chosen as processing unit – the Raspberry Pi 4 4GB and the 
NVIDIA Jetson Nano 2GB. The Raspberry Pi 4 is a widely 
used single board computer with a 1.5 GHz ARM Cortex-
A72 quad-core CPU and 4 GB RAM. The NVIDIA Jetson 
Nano, which was especially developed for AI applications, 
features an ARM Cortex-A57 CPU, a Maxwell GPU and 2 
GB RAM. Both devices were selected due to their speed 
and performance in comparison with relatively low pro-
curement prices. The chosen camera module is the Rasp-
berry Pi camera module 2. The module has an IMX219 sen-
sor from Sony and is suitable for recording high-definition 
videos. In addition to the camera and the processor, other 
components are necessary to support the operation of the 
smart camera. To avoid overheating of the processing unit 
during inference, fans were selected to cool the systems 
during use. Additionally, a case was designed to shield the 
hardware from external influences.  

3.3 OBJECT DETECTION MODEL AND FRAMEWORKS 

Due to the high accuracy and high speed, as well as the 
large scope of usable frameworks, YOLOv4 was chosen as 
the model for the small load carrier detection solution. 
YOLOv4 extends the previous YOLO network architec-
tures by several features. This includes the selection of 
PANet for feature aggregation, the addition of an SPP 
block to increase the receptive field, the adaptation of the 
loss function and the integration of data augmentation 
methods. Additionally, YOLOv4 comprises a method for 
separating overlapping bounding boxes of an object in-
stance. Batch normalization is performed by using a cross 
mini-batch normalization technique. The use of the so-
called DropBlock regularization technique permits the sup-
plementary simulation of occlusions [Boc20]. Besides 
YOLOv4, there is also YOLOv4-tiny, which is character-
ized by a simpler network structure and a smaller number 
of parameters. The lighter version of YOLOv4 has a lower 
accuracy, but is suitable for the implementation on devices 
with limited computing capacity due to the reduced com-
putational complexity [Jia20].  
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For the CPU-based Raspberry Pi TensorFlow was 
specified as the framework for inference. Due to the com-
paratively lower computing power, both YOLOv4 and 
YOLOv4-tiny were implemented to allow a comparison 
between the two deep learning models. TensorRT was se-
lected for the GPU-based NVIDIA Jetson Nano, since it is 
especially designed for high-performance inference on 
NVIDIA GPUs. 

3.4 DATA SET GENERATION 

The first task in the development of deep learning-
based object detectors is the collection of image data that is 
used for training and validation. Over the years, datasets 
with pre-annotated images have been created, which can be 
used for many applications. Among the best known are 
ImageNet [Den19], PASCAL VOC [Eve10] and MS 
COCO [Lin14]. However, there are no datasets containing 
images with or without annotations that can be used to train 
learning algorithms for the considered use case. The most 
suitable dataset is the LOCO dataset [May20], which con-
tains annotated images from the logistics sector that also 
include small load carriers and other containers. The im-
ages of this dataset show the small load carriers mainly 
from the side view, while for the present application top 
view images are needed. The availability of suitable free 
online images that can be used as training data is also lim-
ited. 

Since no suitable datasets exist for the presented use 
case, a custom dataset had to be generated as a basis for the 
development of the small load carrier detection solution. 
Figure 2 shows the different small load carriers used and a 
selection of the objects used for filling the small load carri-
ers. 

 

A high-quality training dataset contains images in 
which the objects to be detected are represented in the same 
way as they will be captured by the camera during opera-
tion [Lec15]. For the creation of the dataset, it is therefore 
necessary to capture the objects from different angles and 
in different arrangements to simulate possible situations in 

the operation environment [Liu20]. A total of three differ-
ent locations could be selected for image generation. Figure 
3 shows the locations with the three different backgrounds.   

 

To create different situations with varying arrange-
ments of the small load carriers, videos were created during 
which individual small load carriers were added, removed 
or repositioned. In this way, various arrangements and 
combinations of small load carriers with changing filling 
states could be simulated. In a subsequent pre-annotation 
step, individual frames were extracted from the recorded 
videos. These frames were then annotated and added to the 
dataset. In this way, a total of 3,835 images with 30,754 
object instances could be generated. Overall, it was possi-
ble to create balanced datasets in which full and empty 
small load carriers are equally present. A detailed overview 
with a breakdown of the exact composition of the datasets 
can be found in table 1. 

Table 1. Composition of self-generated dataset 

 
 

3.5 TRAINING PROCESS 

Due to the capacity limitations of the selected edge de-
vices, the training of the object detection models had to be 
performed on a more powerful system. The training of the 
models was carried out on a server of the Institute of Mate-
rial Handling and Logistics on a NVIDIA GeForce GTX 
2070 graphics card. The custom Darknet framework writ-
ten by Joseph Redmon [Red13] was used. A total of three 
different datasets, representing different combinations of 
the base datasets, were used for training: 

• Dataset 1: Base dataset 1 (black) 

• Dataset 2: Base dataset 1 (black) and base da-
taset 2 (white) 

• Dataset 3: Base dataset 1 (black), base dataset 2 
(white) and base dataset 3 (wood) 

These datasets were split into a training set (70%), a 
validation set (20%) and a testing set (10%). The training 

Number of 
images 

Number of 
annotations

Class balance 
(empty/full)

Base dataset 1 (black) 1,387 12,367 52.6% / 47.4%
Base dataset 2 (white) 1,577 11,317 40.9% / 59.1%
Base dataset 3 (wood) 871 7,070 47.4% / 52.6%
Total 3,835 30,754 47.1% / 52.9%
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and validation set where used for fitting and tuning the 
weights of the object detection model, whereas the training 
set was used to assess the performance of the trained model. 
The selected network resolution was 416 x 416 pixels. Con-
volutional weights pre-trained on the COCO dataset were 
used as initial training weights [Boc18]. Depending on the 
size of the training and validation datasets, the training time 
varied between half an hour and one hour for YOLOv4-tiny 
and between five and six hours for YOLOv4.  

4 EXPERIMENTAL RESULTS 

4.1 PERFORMANCE MEASUREMENT 

At the beginning of the design of the automatic detec-
tion solution for small load carriers, the following objec-
tives were defined, which should be accomplished during 
the development of the system: cost-effectiveness, real-
time capability, accuracy and transferability (see chapter 
3.1). By selecting suitable hardware, the costs for the AI-
based cameras could be reduced to a minimum. Both sys-
tems, which feature the Raspberry Pi or the NVIDIA Jetson 
Nano as the computing unit, can be constructed with hard-
ware costs under €100, including the camera module and 
the other additional components. The subsequent analysis 
was intended to determine the degree of fulfillment of the 
other defined objectives for the small load carrier detection 
solution. 

To assess the performance of the object detector dif-
ferent metrices were used. The speed of the detection was 
measured in processed frames per second. The accuracy of 
the object detection was evaluated using the following cri-
teria: precision, recall and mean average precision (mAP). 
A detection algorithm returns the predicted detections 
{(𝑏𝑏𝑘𝑘 , 𝑐𝑐𝑘𝑘, 𝑝𝑝𝑘𝑘)}𝑘𝑘 of an object 𝑘𝑘, where 𝑏𝑏𝑘𝑘 corresponds to the 
bounding box, 𝑐𝑐𝑘𝑘 to the predicted category and 𝑝𝑝𝑘𝑘 to the 
confidence score. The correspondence between the de-
tected objects and the ground truth boxes is checked for 
each image 𝐼𝐼𝑗𝑗 to determine the accuracy of the predictions. 
For a predicted detection to be considered a true positive, 
the overlap between the predicted bounding box and the 
ground truth box, also known as Intersection over Union 
(IoU), must meet or exceed a specified threshold. Addition-
ally, the detected category needs to match the ground truth 
label and the confidence score must exceed a specified 
threshold 𝛽𝛽 for the detection to be accepted [Liu20]. Preci-
sion describes the number of correctly detected objects in 
relation to the total number of detected objects by the algo-
rithm at a given threshold. Recall is defined as the ratio be-
tween the number of detected objects and the total number 
of ground truth boxes. Precision and recall for an object 
category 𝐶𝐶𝑖𝑖 in an image or an image set can be calculated 
using the number of true positives (TP), false positives (FP) 
and false negatives (FN). 

𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖𝑖𝑖
 

𝑅𝑅𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖𝑖𝑖
 

Based on the precision and the recall of an object cat-
egory, the average precision (AP) can be calculated. By 
varying the threshold value β, different recall and precision 
values are obtained, from which a precision-recall curve 
can be derived. The AP summarizes the area under the 
curve and is calculated as the mean of the precision values 
of specified recall levels r [Eve10]. The AP of all object 
categories can be used to determine the mean average pre-
cision, which is a measure of the detection performance of 
the model across all categories [Xia20]. 

𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 = � 𝑃𝑃𝐶𝐶𝑖𝑖(𝑟𝑟)𝑑𝑑𝑑𝑑
1

0
 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
�𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

The mAP is often used to compare the performance of 
different algorithms. However, the way of determining the 
mAP differs depending on the number of considered IoU 
thresholds [Kuz20]. 

4.2 DEVICE UTILIZATION AND LATENCY 

A real-time capable detector requires acceptable ob-
ject detection latency and uninterrupted execution of all ap-
plications running on the device that are responsible for 
small load carrier detection or data exchange. For this pur-
pose, the performance data of the Raspberry Pi and the Jet-
son Nano were collected and analyzed during operation. 
On the Raspberry Pi, object detection could be performed 
with a frame rate of about 0.2 frames per second using 
YOLOv4. The average object detection for a single image 
takes about 4.5 seconds. Further image processing steps re-
quire another 0.34 seconds, which brings the total time for 
analyzing a frame to 4.84 seconds. If YOLOv4-tiny is used 
as object detection model on the Raspberry Pi a frame rate 
of about 1.3 frames per second is achieved. With this frame 
rate, changes in the number of boxes can be detected with-
out major delays. The inference time is about the same as 
the processing time for the images, reducing the total de-
tection time to about 0.79 seconds. On the Jetson Nano, 
only YOLOv4 was implemented as the object detection 
model due to its higher performance compared to 
YOLOv4-tiny. Due to its graphic card and the TensorRT 
framework, the Jetson Nano achieves a frame rate of 4.5 
frames per second. The average total time for detection is 
0.22 seconds. The inference time accounts for the largest 
part with 0.21 seconds, the average image processing time 
is only 0.01 seconds. Figure 4 shows the different times for 
inference and image processing on the different devices. 
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Figure 4. Comparison of average inference and processing times 

The loading time of the models is also a critical factor. 
Before the inference can start, the model must be loaded 
once at the beginning. The different loading times can be 
found in figure 5. Since it takes several minutes to load the 
models, depending on the model and device, the object de-
tection application must run continuously to update the data 
in real time without delay. 

 

The Raspberry Pi never reaches its limits when it 
comes to memory usage. If only the object detection appli-
cation is running, an average of about 2.3 GB RAM is 
needed. Running all applications at the same time increases 
the memory usage to 2.6 GB. The difference in memory 
usage between YOLOv4 and YOLOv4-tiny is not signifi-
cant. During operation without a fan, the Raspberry Pi 
reached temperatures around 80 °C. With additional cool-
ing the temperature could be kept at a constant level of 50 
°C. Due to its smaller RAM, there were occasional delays 
and crashes when operating the Jetson Nano with graphical 
user interface. Operating the Jetson Nano without graphical 
output resulted in a maximum memory usage of 1.8 GB. 
Without additional cooling, the Jetson Nano heated up to 
95 °C at full load. By using the fans, a constant operating 
temperature of around 40 °C could be maintained. It is im-
portant to note that these analyses were performed for ob-
ject detection with a live stream at 480p video quality. In-
creasing the video quality results in increased processing 
times and memory utilization.  

4.3 ACCURACY OF OBJECT DETECTION 

The results show that the mean average precision of 
the YOLOv4 and YOLOv4-tiny models is always above 
99%. Overall, YOLOv4 delivers better results, but the dif-
ference to YOLOv4-tiny is marginal. The reliability of full 
and empty small load carrier detection varies depending on 
the image data used. Overall, the number of false negatives 
almost consistently exceeds the number of false positives. 
This means that predominantly small load carriers are not 
detected as such, rather than objects being falsely identified 
as full or empty small load carriers. 

In general, both YOLOv4 and YOLOv4-tiny provide 
a good reliability in the detection of small load carriers. 
Both free-standing and collocated small load carriers are 
detected with high reliability. The average IoU also appears 
to be sufficient for the use case. Figure 6 shows two exam-
ples of error-free small load carrier detection. 

 
Figure 6. Visualization of exemplary detection results 

Looking at the different types of errors, we can see that 
a large part of false detections are false negatives represent-
ing small load carriers that were not recognized. False pos-
itives, which make up the smaller portion of incorrect de-
tections, can be interfering objects that are detected as 
boxes or boxes that are detected, but incorrectly classified 
as full or empty. These interfering objects include, for ex-
ample, people captured by the camera. Reasons for misi-
dentified empty boxes include dirt, reflections or shadows 
that are sometimes mistakenly recognized as objects in the 
box. Furthermore, it may occur that the items in the box do 
not distinguish themselves enough from the box due to 
their size or color or that they are partially covered by the 
edge of the box, and thus the box is incorrectly identified 
as empty instead of full. However, the erroneous detections 
represent only a very small proportion of the total detec-
tions. 
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4.4  TRANSFERABILITY OF OBJECT DETECTION 

4.4.1 DEVIATING CONTAINERS AND CONTENTS 

Another desired feature of the developed object detec-
tor is its applicability in different scenarios. The object de-
tection solution should be able to be used for the detection 
and classification of different types of small load carriers 
without much additional re-training effort. Small load car-
riers and other containers not used for training were de-
ployed to test the generalizability of the detector. Besides 
the new boxes, different types of fill items were selected 
that do not appear in the training dataset. In addition to nor-
mal sized items, five smaller objects were selected to deter-
mine the minimum size at which an item in the box would 
reliably be detected. The smallest objects were a cube with 
an edge length of 2.5 cm and a cylindrical metal part about 
1.5 cm long. Figure 7 displays all the items used. 

 
Figure 7. Overview of new containers and filling objects 

Table 3 shows the results of inference on the new test 
data. As in previous evaluations, a confidence threshold of 
0.75 was chosen for inference. The dataset consisted of 231 
images with a total of 680 objects to be detected. About 
85% of full and empty small load carriers were correctly 
detected, using both YOLOv4 and YOLOv4-tiny. In con-
trast to the previous accuracy analyses, there was no signif-
icant difference between the two different models. 

Generally, the new boxes were recognized, but classi-
fied as the wrong type, depending on the filling object. 
Only in rare cases an object instance was not identified as 

a full or empty box. The partially changed shapes and col-
ors of the boxes did not have a significant negative influ-
ence on the detection. A more detailed examination of the 
error types revealed that about 80% of the false detections 
was caused by boxes containing certain small items. The 
smallest test object was rarely detected as a fill object due 
to its small size and reflective surface. The other small ob-
jects were detected more reliably, although problems oc-
curred when the color difference to the box was not suffi-
cient. Sometimes parts of the object were also hidden by 
the side panels of the box. Boxes filled with one of the two 
large test objects were always detected accurately. 

 
 

4.4.2 DEVIATING CONTAINERS AND CONTENTS 

Similar to different box types and filling materials, de-
viating backgrounds should not negatively influence the re-
sult of object detection. Due to spatial limitations, this anal-
ysis was limited to different combinations of train and test 
datasets out of the self-generated base datasets. Table 4 
shows the results of the detection models trained with var-
ying non-augmented datasets. The results of the models' 
analysis with test datasets containing only images with 
backgrounds that did not appear in the training dataset are 
highlighted in the table. 

YOLOv4 YOLOv4-tiny
True postitives 580 583
False positives 71 73
False negatives 100 97

Table 2. Detection results of YOLOv4 and YOLOv4-tiny detectors 

DS 1 DS 2 DS 3 DS 1 DS 2 DS 3

Mean average precision @0.50 99.75% 99.95% 99.92% 99.80% 99.78% 99.85%
Average precision empty box 99.84% 99.90% 99.91% 99.83% 99.71% 99.84%
Average precision full box 99.66% 99.99% 99.92% 99.78% 99.85% 99.85%
Precision 1.00 1.00 1.00 1.00 1.00 1.00
Recall 1.00 0.99 1.00 1.00 0.99 0.99
F1-Score 1.00 1.00 1.00 1.00 0.99 0.99
True positives 1,144 2,277 2,845 1,143 2,268 2,835
False positives 2 7 5 2 6 8
False negatives 2 12 14 3 21 24
Average IoU 91.82% 92.58% 92.47% 91.73% 93.21% 90.65%

YOLOv4 YOLOv4-tiny
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full and empty  small load carriers, although some of the 
datasets also comprise deviating filling objects. The perfor-
mance difference between YOLOv4 and YOLOv4-tiny is 
also noticeable in this assessment.  

The tests show that it is possible to use the smart camera in 
different locations without retraining, provided that the 
same boxes and filling objects must be detected which were 
also used during creation of the training data. However, this 
statement is to be considered with reservation, since a more 
comprehensive analysis with a larger number of different 
backgrounds was not possible due to the limited space 
available. 

5 CONCLUSIONS AND FUTURE WORK  

Within the scope of this work an object detection sys-
tem was developed, which can be deployed for monitoring 
the inventory of small load carriers within buffer zones. By 
implementing fast object detectors with suitable accuracy 
on hardware with limited computational and storage capac-
ity, it was possible to create an intelligent camera within 
the context of the use case that detects the specified objects 
with a high reliability. One prerequisite for high accuracy 
is that the images used for training the models include the 
same boxes, filling objects and backgrounds that are en-
countered in the practical application scenario. The ap-
plicability of the smart cameras under changed conditions 
could be partially confirmed. Regardless of high accuracies 
in some cases during the tests with unknown locations, 
boxes and filling objects, an extended analysis is necessary 
to evaluate the general transferability of the object detec-
tion solution. 

Despite the good performance, there are some aspects 
of the solution that could be improved and simplified for 
operation in a real environment. One possibility is to ana-
lyze the effect of increasing the network resolution on the 
results and the latency of the detection. In addition, other 
YOLO models, such as Scaled-YOLOv4 or YOLOv5, 
could be implemented. The use of alternative models, such 
as EfficientDet, could also be considered. Extending the 
training dataset with images showing varying scenarios 
with different types of boxes, backgrounds and filling ob-
jects, could facilitate the use of the solution at locations 
with deviating conditions and increase the overall general-
izability. 
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